Skip to main content

Advertisement

Log in

Secondary metabolites of endophytic Xylaria species with potential applications in medicine and agriculture

  • REVIEW
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Fungal endophytes are important sources of bioactive secondary metabolites. The genus Xylaria Hill (ex Schrank, 1789, Xylariaceae) comprises various endophytic species associated to both vascular and non vascular plants. The secondary metabolites produced by Xylaria species include a variety of volatile and non-volatile compounds. Examples of the former are sesquiterpenoids, esters, and alcohols, among others; and of the latter we find terpenoids, cytochalasins, mellein, alkaloids, polyketides, and aromatic compounds. Some of these metabolites have shown potential activity as herbicides, fungicides, and insecticides; others possess antibacterial, antimalarial, and antifungal activities, or α-glucosidase inhibitory activity. Thus metabolites from Xylaria are promising compounds for applications in agriculture for plague control as biopesticides, and biocontrol agents; and in medicine, for example as drugs for the treatment of infectious and non-infectious diseases. This review seeks to show the great value of the secondary metabolites of Xylaria, particularly in the agriculture and medicine fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amand S, Langenfeld A, Blond A et al (2012) Guaiane sesquiterpenes from Biscogniauxia nummularia featuring potent antigerminative activity. J Nat Prod 75:798–801. doi:10.1021/np2009913

    Article  CAS  Google Scholar 

  • Arnold AE, Lutzoni F (2007) Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecology 88:541–549. doi:10.1890/05-1459

    Article  Google Scholar 

  • Baraban EG, Morin JB, Phillips GM et al (2013) Xyolide, a bioactive nonenolide from an Amazonian endophytic fungus, Xylaria feejeensis. Tetrahedron Lett 54:4058–4060. doi:10.1016/j.tetlet.2013.05.093

    Article  CAS  Google Scholar 

  • Borgschulte K, Rebuffat S, Trowitzsch-Kienast W et al (1991) Isolation and structure elucidation of hymatoxins B - E and other phytotoxins from Hypoxylon mammatum fungal pathogen of leuce poplars. Tetrahedron 47:8351–8360. doi:10.1016/S0040-4020(01)96176-9

  • Brilhante RSN, Caetano ÉP, de Lima RAC et al (2016) Terpinen-4-ol, tyrosol, and β-lapachone as potential antifungals against dimorphic fungi. Braz J Microbiol. doi:10.1016/j.bjm.2016.07.015

    Google Scholar 

  • Calhoun LA, Findlay JA, David Miller J, Whitney NJ (1992) Metabolites toxic to spruce budworm from balsam fir needle endophytes. Mycol Res 96:281–286. doi:10.1016/S0953-7562(09)80939-8

    Article  Google Scholar 

  • Casella JF, Flanagan MD, Lin S (1981) Cytochalasin D inhibits actin polymerization and induces depolymerization of actin filaments formed during platelet shape change. Nature 293:302–305. doi:10.1038/293302a0

    Article  CAS  Google Scholar 

  • Cateni F, Zacchigna M, Altieri T et al (2015) Antioxidant properties of oak bracket mushroom, Pseudoinonotus dryadeus (higher basidiomycetes): a mycochemical study. Int J Med Mushrooms 17:627–637. doi:10.1615/IntJMedMushrooms.v17.i7.30

    Article  Google Scholar 

  • Chaichanan J, Wiyakrutta S, Pongtharangkul T et al (2014) Optimization of zofimarin production by an endophytic fungus, Xylaria sp. Acra L38. Braz J Microbiol 45:287–293. doi:10.1590/S1517-83822014000100042

    Article  Google Scholar 

  • Chen Y, Chang H, Cheng M et al (2016) New chemical constituents from the endophytic fungus Xylaria papulis cultivated on Taiwanese Lepidagathis stenophylla. Rec Nat Prod 10:735–743

    CAS  Google Scholar 

  • Chinworrungsee M, Kittakoop P, Isaka M et al (2001) Antimalarial halorosellinic acid from the marine fungus Halorosellinia oceanica. Bioorganic Med Chem Lett 11:1965–1969. doi:10.1016/S0960-894X(01)00327-4

    Article  CAS  Google Scholar 

  • Davis EC, Franklin JB, Shaw AJ, Vilgalys R (2003) Endophytic Xylaria (Xylariaceae) among liverworts and angiosperms: phylogenetics, distribution, and symbiosis. Am J Bot 90:1661–1667. doi:10.3732/ajb.90.11.1661

    Article  Google Scholar 

  • Fan N-W, Chang H-S, Cheng M-J et al (2014) Secondary metabolites from the endophytic fungus Xylaria cubensis. Helv Chim Acta 97:1689–1699. doi:10.1002/hlca.201400091

    Article  CAS  Google Scholar 

  • Gao F, Dai C, Liu X (2010) Mechanisms of fungal endophytes in plant protection against pathogens. Afr J Microbiol Res 4:1346–1351

    Google Scholar 

  • García-Méndez MC, Macías-Ruvalcaba NA, Lappe-Oliveras P et al (2016) Phytotoxic potential of secondary metabolites and semisynthetic compounds from endophytic fungus Xylaria feejeensis strain SM3e-1b isolated from Sapium macrocarpum. J Agric Food Chem 64:4255–4263. doi:10.1021/acs.jafc.6b01111

    Article  Google Scholar 

  • Giovannini C, Straface E, Modesti D et al (1999) Tyrosol, the major olive oil biophenol, protects against oxidized-LDL-induced injury in Caco-2 cells. J Nutr 129:1269–1277

    CAS  Google Scholar 

  • Guzmán-Trampe S, Rodríguez-Peña K, Espinosa-Gómez A et al (2015) Endophytes as a potential source of new antibiotics. In: Sanchez S, Demain AL (eds) Antibiotics current innovations and future trends. Caister Academic Press, Norfolk, pp 175–206

    Chapter  Google Scholar 

  • Hu YM, Liu C, Cheng KW et al (2008) Sesquiterpenoids from Homalomena occulta affect osteoblast proliferation, differentiation and mineralization in vitro. Phytochemistry 69:2367–2373. doi:10.1016/j.phytochem.2008.05.023

    Article  CAS  Google Scholar 

  • Huang R, Xie XS, Fang XW et al (2015) Five new guaiane sesquiterpenes from the endophytic fungus Xylaria sp. YM 311647 of Azadirachta indica. Chem Biodivers 12:1281–1286. doi:10.1002/cbdv.201400405

    Article  CAS  Google Scholar 

  • Hyde KD, Soytong K (2008) The fungal endophyte dilemma. Fungal Divers 33:163–173

    Google Scholar 

  • Ibrahim A, Sorensen D, Jenkins HA et al (2014) New diplosporin and agistatine derivatives produced by the fungal endophyte Xylaria sp. isolated from Vitis labrusca. Phytochem Lett 9:179–183. doi:10.1016/j.phytol.2014.06.011

    Article  CAS  Google Scholar 

  • Itoh Y, Takahashi S, Arai M (1982) Structure of gliocladic acid. J Antibiot (Tokyo) 35:541–542

    Article  CAS  Google Scholar 

  • Kusari S, Hertweck C, Spiteller M (2012) Chemical ecology of endophytic fungi: origins of secondary metabolites. Chem Biol 19:792–798. doi:10.1016/j.chembiol.2012.06.004

    Article  CAS  Google Scholar 

  • Lee J, Yi J-M, Kim H et al (2014) Cytochalasin H, an active anti-angiogenic constituent of the ethanol extract of Gleditsia sinensis Thorns. Biol Pharm Bull 37:6–12. doi:10.1248/bpb.b13-00318

    Article  CAS  Google Scholar 

  • Li DH, Cai SX, Tian L et al (2007) Two new metabolites with cytotoxicities from deep-sea fungus, Aspergillus sydowi YH11-2. Arch Pharm Res 30:1051–1054

    Article  CAS  Google Scholar 

  • Li Y, Lu C, Huang Y et al (2012) Cytochalasin H2, a new cytochalasin, isolated from the endophytic fungus Xylaria sp. A23. Rec Nat Prod 6:121–126

    Google Scholar 

  • Li HX, Xiao Y, Cao LL et al (2013) Cerebroside C increases tolerance to chilling injury and alters lipid composition in wheat roots. PLoS ONE 8:e73380. doi:10.1371/journal.pone.0073380

    Article  CAS  Google Scholar 

  • Macías-Rubalcava ML, Hernández-bautista BE, Oropeza F et al (2010) Allelochemical effects of volatile compounds and organic extracts from Muscodor yucatanensis, a tropical endophytic fungus from Bursera simaruba. J Chem Ecol 36:1122–1131. doi:10.1007/s10886-010-9848-5

    Article  Google Scholar 

  • Ogita T, Hayashi T, Satou A, Furuya K (1987) Antibiotic zofimarin. Jpn Kokai Tokkyo Koho JP S6240292 A

  • Park J, Choi J, Gyung GJ et al (2005) Griseofulvin from Xylaria sp. strain F0010, an endophytic fungus of Abies holophylla and its antifungal activity against plant pathogenic fungi. J Microbiol Biotechnol 15:112–117

    CAS  Google Scholar 

  • Pongcharoen W, Rukachaisirikul V, Isaka M, Sriklung K (2007) Cytotoxic metabolites from the wood-decayed fungus Xylaria sp. BCC 9653. Chem Pharm Bull 55:1647–1648. doi:10.1248/cpb.55.1647

    Article  CAS  Google Scholar 

  • Rakshith D, Santosh P, Tarman K et al (2013) Dereplication strategy for antimicrobial metabolite using thin-layer chromatography-bioautography and LC-PDA-MS analysis. J Planar Chromatogr TLC 26:470–474. doi:10.1556/JPC.26.2013.6.2

    Article  CAS  Google Scholar 

  • Ratnaweera PB, Williams DE, de Silva ED et al (2014) Helvolic acid, an antibacterial nortriterpenoid from a fungal endophyte, Xylaria sp. of orchid Anoectochilus setaceus endemic to Sri Lanka. Mycology 5:23–28. doi:10.1080/21501203.2014.892905

    Article  Google Scholar 

  • Richardson SN, Walker AK, Nsiama TK et al (2014) Griseofulvin-producing Xylaria endophytes of Pinus strobus and Vaccinium angustifolium: evidence for a conifer-understory species endophyte ecology. Fungal Ecol 11:107–113. doi:10.1016/j.funeco.2014.05.004

    Article  Google Scholar 

  • Rivera-Chávez J, Figueroa M, González MDC et al (2015) α-Glucosidase inhibitors from a Xylaria feejeensis associated with Hintonia latiflora. J Nat Prod 78:730–735. doi:10.1021/np500897y

    Article  Google Scholar 

  • Rukachaisirikul V, Khamthong N, Sukpondma Y et al (2009) An [11]cytochalasin derivative from the marine-derived fungus Xylaria sp. PSU-F100. Chem Pharm Bull (Tokyo) 57:1409–1411. doi:10.1248/cpb.57.1409

    Article  CAS  Google Scholar 

  • Rukachaisirikul V, Buadam S, Sukpondma Y et al (2013) Indanone and mellein derivatives from the Garcinia-derived fungus Xylaria sp. PSU-G12. Phytochem Lett 6:135–138. doi:10.1016/j.phytol.2012.11.007

    Article  CAS  Google Scholar 

  • Sánchez-Ortiz BL, Sánchez-Fernández RE, Duarte G et al (2016) Antifungal, antioomycete and phytotoxic effects of volatile organic compounds from the endophytic fungus Xylaria sp. strain PB3f3 isolated from Haematoxylon brasiletto. J Appl Microbiol 120:1313–1325. doi:10.1111/jam.13101

    Article  Google Scholar 

  • Sica VP, Rees ER, Tchegnon E et al (2016) Spatial and temporal profiling of griseofulvin production in Xylaria cubensis using mass spectrometry mapping. Front Microbiol. doi:10.3389/fmicb.2016.00544

    Google Scholar 

  • Song F, Wu S, Zhai Y et al (2014) Secondary metabolites from the genus Xylaria and their bioactivities. Chem Biodivers 11:673–694. doi:10.1002/cbdv.20120028

    Article  CAS  Google Scholar 

  • Sorres J, Nirma C, Touré S et al (2015) Two new isopimarane diterpenoids from the endophytic fungus Xylaria sp. SNB-GTC2501. Tetrahedron Lett 56:4596–4598. doi:10.1016/j.tetlet.2015.06.022

    Article  CAS  Google Scholar 

  • Stinson AM, Zidack NK, Strobel GA et al (2003) Mycofumigation with Muscodor albus and Muscodor roseus for control of seedling diseases of sugar beet and Verticillium wilt of eggplant. Plant Dis 87:1349–1354. doi:10.1094/PDIS.2003.87.11.1349

    Article  Google Scholar 

  • Tarman K, Palm G, Wende K, Lindequist U (2011) Biological and chemical study of two Indonesian marine endophytic fungi. Planta Med 77:SL71. doi: 10.1055/s-0031-1282194

  • Trendowski M, Zoino JN, Christen TD et al (2015) Preparation, in vivo administration, dose-limiting toxicities, and antineoplastic activity of cytochalasin B. Transl Oncol 8:308–317. doi:10.1016/j.tranon.2015.06.003

    Article  Google Scholar 

  • Vicente MF, Basilio A, Cabello A, Peláez F (2003) Microbial natural products as a source of antifungals. Clin Microbiol Infect 9:15–32. doi:10.1046/j.1469-0691.2003.00489.x

    Article  CAS  Google Scholar 

  • Wang Y, Wang X, Lai G et al (2007) Three new sesquiterpenoids from the aerial parts of Homalomena occulta. Chem Biodivers 4:925–931. doi:10.1002/cbdv.200790081

    Article  CAS  Google Scholar 

  • Wang F, Fang Y, Zhang M et al (2008) Six new ergosterols from the marine-derived fungus Rhizopus sp. Steroids 73:19–26. doi:10.1016/j.steroids.2007.08.008

    Article  CAS  Google Scholar 

  • Webster J, Weber R (2007) Introduction to fungi, 3rd edn. Cambridge University Press, New York

    Book  Google Scholar 

  • Wei H, Xu YM, Espinosa-Artiles P et al (2015) Sesquiterpenes and other constituents of Xylaria sp. NC1214, a fungal endophyte of the moss Hypnum sp. Phytochemistry 118:102–108. doi:10.1016/j.phytochem.2015.08.010

    Article  CAS  Google Scholar 

  • Wells JM, Cutler HG, Cole RJ (1976) Toxicity and plant growth regulator effects of cytochalasin H isolated from Phomopsis sp. Can J Microbiol 22:1137–1143

    Article  CAS  Google Scholar 

  • Wicklow D, Rogers K, Dowd P, Gloer J (2011) Bioactive metabolites from Stenocarpella maydis, a stalk and ear rot pathogen of maize. Fungal Biol 115:133–142. doi:10.1016/j.funbio.2010.11.003

    Article  CAS  Google Scholar 

  • Wu S-H, Chen Y-W, Miao C-P (2011) Secondary metabolites of endophytic fungus Xylaria sp. YC-10 of Azadirachta indica. Chem Nat Compd 47:749–751. doi:10.1007/s10600-011-0086-z

    Article  Google Scholar 

  • Wu SH, He J, Li XN et al (2014) Guaiane sesquiterpenes and isopimarane diterpenes from an endophytic fungus Xylaria sp. Phytochemistry 105:197–204

    Article  CAS  Google Scholar 

  • Xu S, Hui MG, Yong CS et al (2009) Cytotoxic cytochalasin metabolites of endophytic Endothia gyrosa. Chem Biodivers 6:739–745. doi:10.1002/cbdv.200800034

    Article  CAS  Google Scholar 

  • Zhang Q, Xiao J, Sun QQ et al (2014) Characterization of cytochalasins from the endophytic Xylaria sp. and their biological functions. J Agric Food Chem 62:10962–10969. doi:10.1021/jf503846z

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the CONACyT Grant 179194. We wish to thank to M. S. Elizabeth K. Galván Miranda from Facultad de Química, UNAM, for language revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martha Lydia Macías-Rubalcava.

Ethics declarations

Conflict of interst

The authors declare no competing financial interest.

Additional information

Martha Lydia Macías-Rubalcava and Rosa Elvira Sánchez-Fernández have contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Macías-Rubalcava, M.L., Sánchez-Fernández, R.E. Secondary metabolites of endophytic Xylaria species with potential applications in medicine and agriculture. World J Microbiol Biotechnol 33, 15 (2017). https://doi.org/10.1007/s11274-016-2174-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-016-2174-5

Keywords

Navigation