Skip to main content

Advertisement

Log in

Genetic diversity of indigenous soybean-nodulating rhizobia in response to locally-based long term fertilization in a Mollisol of Northeast China

  • Short Communication
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The influences of five different fertilizer treatments on diversity of rhizobia in soybean nodule were investigated in a long-term experiment with with four replicates: (1) control (without fertilization), (2) balanced NPK fertilizer (NPK), and (3–5) unbalanced chemical fertilizers without one of the major elements (NP, PK, and NK) in Mollisol in Northeast China. The highest soybean yield was observed in the NPK treatment. Total of 200 isolates were isolated and grouped into four Bradyrhizobium genospecies corresponding to B. japonicum, B. diazoefficiens, B. ottawaense and Bradyrhizobium sp. I, based upon the multilocus sequence analysis of 6 housekeeping genes. The Bradyrhizobium sp. I was extensively distributed throughout the study site and was recorded as the dominant soybean rhizobia (82.5–87.5%). Except the NK treatment, the other fertilizer treatments had no effect on rhizobial species composition. Compared with the CK treatment, all the fertilizer treatments decreased species richness, diversity and evenness. The soil organic carbon contents, available N content and pH were the key soil factors to rhizobial community structure. Results suggest that long-term fertilization can decrease rhizobial species diversity, while balanced fertilization with NPK is the most suitable fertilization regime if taking both soybean yields and rhizobial diversity into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Abaidoo RC, Keyser HH, Singleton PW, Dashiell KE, Sanginga N (2007) Population size, distribution, and symbiotic characteristics of indigenous Bradyrhizobium spp. that nodulate TGx soybean genotypes in Africa. Appl Soil Ecol 35:57–67. doi:10.1016/j.apsoil.2006.05.006

    Article  Google Scholar 

  • Andrade DS, Murphy PJ, Giller KE (2002) Effects of liming and legume/cereal cropping on populations of indigenous rhizobia in an acid Brazilian Oxisol. Soil Biol Biochem 34:477–485. doi:10.1016/s0038-0717(01)00206-1

    Article  CAS  Google Scholar 

  • Appunu C, N’Zoue A, Laguerre G (2008) Genetic diversity of native bradyrhizobia isolated from soybeans (Glycine max L.) in different agricultural-ecological-climatic regions of India. Appl Environ Microbiol 74:5991–5996. doi:10.1128/aem.01320-08

    Article  CAS  Google Scholar 

  • Asimi S, Gianinazzi-Pearson V, Gianinazzi S (1980) Influence of increasing soil phosphorus levels on interactions between vesicular-arbuscular mycorrhizae and Rhizobium in soybeans. Can J Bot 58:2200–2205

    Article  CAS  Google Scholar 

  • Bizarro MJ et al (2011) Genetic variability of soybean bradyrhizobia populations under different soil managements. Biol Fertil Soils 47:357–362. doi:10.1007/s00374-010-0512-6

    Article  Google Scholar 

  • Caballero-Mellado J, Martinez-Romero E (1999) Soil fertilization limits the genetic diversity of Rhizobium in bean nodules. Symbiosis 26:111–121

    Google Scholar 

  • de Almeida Ribeiro PR et al (2015) Symbiotic efficiency and genetic diversity of soybean bradyrhizobia in Brazilian soils. Agric Ecosyst Environ 212:85–93. doi:10.1016/j.agee.2015.06.017

    Article  Google Scholar 

  • Ferreira MC, Andrade DD, Chueire LMD, Takemura SM, Hungria M (2000) Tillage method and crop rotation effects on the population sizes and diversity of bradyrhizobia nodulating soybean. Soil Biol Biochem 32:627–637. doi:10.1016/s0038-0717(99)00189-3

    Article  CAS  Google Scholar 

  • Gan YB, Stulen I, van Keulen H, Kuiper PJC (2003) Effect of N fertilizer top-dressing at various reproductive stages on growth, N2 fixation and yield of three soybean (Glycine max (L.) Merr.) genotypes. Field Crops Res 80:147–155. doi:10.1016/s0378-4290(02)00171-5

    Article  Google Scholar 

  • Gates C, Wilson J (1974) The interaction of nitrogen and phosphorus on the growth, nutrient status and nodulation of Stylosanthes humilis HBK (Townsville Stylo). Plant Soil 41:325–333

    Article  CAS  Google Scholar 

  • Germida JJ (1988) Growth of indigenous Rhizobium leguminosarum and Rhizobium meliloti in soils amended with organic nutrients. Appl Environ Microbiol 54:257–263

    CAS  Google Scholar 

  • Giongo A, Ambrosini A, Vargas LK, Freire JRJ, Bodanese-Zanettini MH, Passaglia LMP (2008) Evaluation of genetic diversity of bradyrhizobia strains nodulating soybean Glycine max (L.) Merrill isolated from South Brazilian fields. Appl Soil Ecol 38:261–269. doi:10.1016/j.apsoil.2007.10.016

    Article  Google Scholar 

  • Guan D, Li L, Jiang X, Ma M, Cao F, Zhou B, Li J (2015) Influence of long-term fertilization on the community structure and diversity of soybean rhizobia in black soil. Biodivers Sci 23:68–78 (in Chinese)

    Article  Google Scholar 

  • He JZ, Shen JP, Zhang LM, Zhu YG, Zheng YM, Xu MG, Di HJ (2007) Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices. Environ Microbiol 9:3152. doi:10.1111/j.1462-2920.2007.01481.x

    Article  CAS  Google Scholar 

  • Herrmann L, Chotte JL, Thuita M, Lesueur D (2014) Effects of cropping systems, maize residues application and N fertilization on promiscuous soybean yields and diversity of native rhizobia in Central Kenya. Pedobiologia 57:75–85. doi:10.1016/j.pedobi.2013.12.004

    Article  Google Scholar 

  • Hill TC, Walsh KA, Harris JA, Moffett BF (2003) Using ecological diversity measures with bacterial communities. FEMS Microbiol Ecol 43:1–11

    Article  CAS  Google Scholar 

  • Hurek T, Wagner B, Reinhold HB (1997) Identification of N2-fixing plant-and fungus-associated Azoarcus species by PCR-based genomic fingerprints. Appl Environ Microbiol 63:4331–4339

    CAS  Google Scholar 

  • Israel DW (1987) Investigations of the role of phosphorus in symbiotic dinitrogen fixation. Plant Physiol 84:835–840. doi:10.1104/pp.84.3.835

    Article  CAS  Google Scholar 

  • Laguerre G, Nour SM, Macheret V, Sanjuan J, Drouin P, Amarger N (2001) Classification of rhizobia based on nodC and nifH gene analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbionts. Microbiology-Uk 147:981–993. doi:10.1099/00221287-147-4-981

    Article  CAS  Google Scholar 

  • Li JH, Wang ET, Chen WF, Chen WX (2008) Genetic diversity and potential for promotion of plant growth detected in nodule endophytic bacteria of soybean grown in Heilongjiang province of China. Soil Biol Biochem 40:238–246. doi:10.1016/j.soilbio.2007.08.014

    Article  CAS  Google Scholar 

  • Li Y, Li XY, Liu YJ, Wang ET, Ren CG et al (2016) Genetic diversity and community structure of rhizobia nodulating Sesbania cannabina in saline–alkaline soils. Syst Appl Microbiol 39:195–202. doi:10.1016/j.syapm.2016.02.004

    Article  Google Scholar 

  • Lindstrom K, Murwira M, Willems A, Altier N (2010) The biodiversity of beneficial microbe-host mutualism: the case of rhizobia. Res Microbiol 161:453–463. doi:10.1016/j.resmic.2010.05.005

    Article  Google Scholar 

  • Lu RK (1999) Methods for agrochemical analysis of soils. China Agricultural Science and Technology Press, Beijing (in Chinese)

    Google Scholar 

  • Man CX, Wang H, Chen WF, Sui XH, Wang ET, Chen WX (2008) Diverse rhizobia associated with soybean grown in the subtropical and tropical regions of China. Plant Soil 310:77–87. doi:10.1007/s11104-008-9631-3

    Article  CAS  Google Scholar 

  • O’hara GW, Boonkerd N, Dilworth MJ (1988) Mineral constraints to nitrogen fixation. Plant Soil 108:93–110

    Article  Google Scholar 

  • Olsen SR (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. U.S. Department of Agriculture, Washington, D.C

  • Palmer KM, Young JPW (2000) Higher diversity of Rhizobium leguminosarum biovar viciae populations in arable soils than in grass soils. Appl Environ Microbiol 66:2445–2450. doi:10.1128/aem.66.6.2445-2450.2000

    Article  CAS  Google Scholar 

  • Pastor J, Binkley D (1998) Nitrogen fixation and the mass balance of carbon and nitrogen in ecosystems. Biogeochemistry 43:63–78. doi:10.1023/A:1006057428096

    Article  Google Scholar 

  • Pernes-Debuyser A, Tessier D (2004) Soil physical properties affected by long-term fertilization. Eur J Soil Sci 55:505–512. doi:10.1111/j.1365-2389.2004.00614.x

    Article  CAS  Google Scholar 

  • Premaratne K, Oertli J (1994) The influence of potassium supply on nodulation, nitrogenase activity and nitrogen accumulation of soybean (Glycine max L. Merrill) grown in nutrient solution. Fertil Res 38:95–99

    Article  Google Scholar 

  • Qiao YF, Miao SJ, Han XZ, You MY, Zhu X, Horwath WR (2014) The effect of fertilizer practices on N balance and global warming potential of maize-soybean rotation in Northeast China. Field Crops Res 161:98–106. doi:10.1016/j.fcr.2014.03.005

    Article  Google Scholar 

  • R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2013. ISBN 3-900051-07-0

  • Rivas R, Martens M, de Lajudie P, Willems A (2009) Multilocus sequence analysis of the genus Bradyrhizobium. Syst Appl Microbiol 32:101–110. doi:10.1016/j.syapm.2008.12.005

    Article  CAS  Google Scholar 

  • Robson A (1978) Mineral nutrients limiting nitrogen fixation in legumes. In: Andrew CS, Kamprath EJ (eds) Mineral nutrition of legumes in tropical and subtropical soils. CSIRO, Melbourne

    Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  Google Scholar 

  • Sarita S, Sharma PK, Priefer UB, Prell J (2005) Direct amplification of rhizobial nodC sequences from soil total DNA and comparison to nodC diversity of root nodule isolates. FEMS Microbiol Ecol 54:1–11. doi:10.1016/j.femsec.2005.02.015

    Article  CAS  Google Scholar 

  • Semu E, Hume DJ, Corke CT (1979) Influence of soybean inoculation and nitrogen levels on populations and serogroups of Rhizobium japonicum in Ontario. Can J Microbiol 25:739–745

    Article  CAS  Google Scholar 

  • Seneviratne G, Van Holm LHJ, Ekanayake EMHGS (2000) Agronomic benefits of rhizobial inoculant use over nitrogen fertilizer application in tropical soybean. Field Crops Res 68:199–203. doi:10.1016/S0378-4290(00)00123-4

    Article  Google Scholar 

  • Shen J, Li R, Zhang F, Fan J, Tang C, Rengel Z (2004) Crop yields, soil fertility and phosphorus fractions in response to long-term fertilization under the rice monoculture system on a calcareous soil. Field Crops Res 86:225–238. doi:10.1016/j.fcr.2003.08.013

    Article  Google Scholar 

  • Simonsen AK, Han S, Rekret P, Rentschler CS, Heath KD, Stinchcombe JR (2015) Short-term fertilizer application alters phenotypic traits of symbiotic nitrogen fixing bacteria. PeerJ 3:e1291. doi:10.7717/peerj.1291

    Article  Google Scholar 

  • Šmilauer P, Lepš J (2014) Multivariate analysis of ecological data using CANOCO 5 2nd Edn. Cambridge University Press. http://www.cambridge.org/us/catalogue/catalogue.asp?isbn=9781139950916

  • Soil Survey Staff (2014) Keys to soil taxonomy, 12th edn. USDA-Natural Resources Conservation Service, Washington DC

    Google Scholar 

  • Stepkowski T, Czaplinska M, Miedzinska K, Moulin L (2003) The variable part of the dnaK gene as an alternative marker for phylogenetic studies of rhizobia and related alpha Proteobacteria. Syst Appl Microbiol 26:483–494. doi:10.1078/072320203770865765

    Article  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. doi:10.1093/molbev/msr121

    Article  CAS  Google Scholar 

  • Terefework Z, Kaijalainen S, Lindstrom K (2001) AFLP fingerprinting as a tool to study the genetic diversity of Rhizobium galegae isolated from Galega orientalis and Galega officinalis. J Biotechnol 91:169–180. doi:10.1016/s0168-1656(01)00338-8

    Article  CAS  Google Scholar 

  • Tian CF, Zhou YJ, Zhang YM, Li QQ, Zhang YZ, Li DF, Wang S et al (2012) Comparative genomics of rhizobia nodulating soybean suggests extensive recruitment of lineage-specific genes in adaptations. Proc Natl Acad Sci USA 109:8629–8634. doi:10.1073/pnas.1120436109

    Article  CAS  Google Scholar 

  • Vance C (1997) Enhanced agricultural sustainability through biological nitrogen fixation. In: Legocki A (ed) Biological fixation of nitrogen for ecology and sustainable agriculture. Springer, Berlin, pp 179–186

    Chapter  Google Scholar 

  • Vincent J (1970) A manual for the practical study of root nodule bacteria. IBP Handbook No. 15. Blackwell scientific, Oxford, pp 73–97

    Google Scholar 

  • Vinuesa P, Silva C, Werner D, Martinez-Romero E (2005) Population genetics and phylogenetic inference in bacterial molecular systematics: the roles of migration and recombination in Bradyrhizobium species cohesion and delineation. Mol Phylogenet Evol 34:29–54. doi:10.1016/j.ympev.2004.08.020

    Article  CAS  Google Scholar 

  • Vinuesa P, Rojas JK, Contreras MB, Mahna SK, Prasad BN, Moe H, Selvaraju SB, Thierfelder H, Werner D (2008) Multilocus sequence analysis for assessment of the biogeography and evolutionary genetics of four Bradyrhizobium species that nodulate soybeans on the asiatic continent. Appl Environ Microbiol 74:6987–6996. doi:10.1128/aem.00875-08

    Article  CAS  Google Scholar 

  • Wang H, Man CX, Wang ET, Chen WX (2009) Diversity of rhizobia and interactions among the host legumes and rhizobial genotypes in an agricultural-forestry ecosystem. Plant Soil 314:169–182. doi:10.1007/s11104-008-9716-z

    Article  CAS  Google Scholar 

  • Weese DJ, Heath KD, Dentinger BTM, Lau JA (2015) Long-term nitrogen addition causes the evolution of less-cooperative mutualists. Evolution 69:631–642. doi:10.1111/evo.12594

    Article  CAS  Google Scholar 

  • Xing BS, Liu XB, Liu JD, Han XZ (2004) Physical and chemical characteristics of a typical mollisol in China. Commun Soil Sci Plant Anal 35:1829–2839. doi:10.1081/CSS-200026802

    Article  CAS  Google Scholar 

  • Xu LM, Ge C, Cui Z, Li J, Fan H (1995) Bradyrhizobium liaoningense sp. nov., isolated from the root-nodules of soybeans. Int J Syst Bacteriol 45:706–711. doi:10.1099/00207713-45-4-706

    Article  CAS  Google Scholar 

  • Yan J, Han XZ, Ji ZJ, Li Y, Wang ET, Xie ZH, Chen WF (2014) Abundance and diversity of soybean-nodulating rhizobia in black soil are impacted by land use and crop management. Appl Environ Microbiol 80:5394–5402. doi:10.1128/aem.01135-14

    Article  Google Scholar 

  • Yan H, Ji ZJ, Jiao YS, Wang ET, Chen WF, Guo BL, Chen WX (2016) Genetic diversity and distribution of rhizobia associated with the medicinal legumes Astragalus spp. and Hedysarum polybotrys in agricultural soils. Syst Appl Microbiol 39:141–149. doi:10.1016/j.syapm.2016.01.004

    Article  Google Scholar 

  • Zahran HH (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev 63:968–989

    CAS  Google Scholar 

  • Zengeni R, Mpepereki S, Giller KE (2006) Manure and soil properties affect survival and persistence of soyabean nodulating rhizobia in smallholder soils of Zimbabwe. Appl Soil Ecol 32:232–242. doi:10.1016/j.apsoil.2005.06.001

    Article  Google Scholar 

  • Zhang YM, Li Y Jr, Chen WF, Wang ET, Tian CF, Li QQ, Zhang YZ, Sui XH, Chen WX (2011) Biodiversity and biogeography of rhizobia associated with soybean plants grown in the North China plain. Appl Environ Microbiol 77:6331–6342. doi:10.1128/aem.00542-11

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financial supported by the National Natural Science Foundation of China (41201246, 41671299, 41371296, 31370108).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Yan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 800 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, J., Chen, W., Han, X. et al. Genetic diversity of indigenous soybean-nodulating rhizobia in response to locally-based long term fertilization in a Mollisol of Northeast China. World J Microbiol Biotechnol 33, 6 (2017). https://doi.org/10.1007/s11274-016-2170-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-016-2170-9

Keywords

Navigation