Rhizobacteria with nematicide aptitude: enzymes and compounds associated

Abstract

The use of rhizobacteria to control plant parasitic nematodes has been widely studied. Currently, the research focuses on bacteria-nematode interactions that can mitigate this complex microbiome in agriculture. Various enzymes, toxins and metabolic by-products from rhizobacteria antagonize plant parasitic nematodes, and many different modes of action have been proposed. Hydrolytic enzymes, primarily proteases, collagenases and chitinases, have been related to the nematicide effect in rhizobacteria, proving to be an important factor involved in the degradation of different chemical constituents of nematodes at distinct developmental stages. Exuded metabolites may also alter the nematode-plant recognition process or create a hostile environment for nematodes in the rhizosphere. Specific bacteria strains responsible for the production of toxins, such as Cry proteins, are one of the strategies used by rhizobacteria. Characterization of the rhizobacteria mode of action could strengthen the development of commercial products to control populations of plant parasitic nematodes. This review aims to provide an overview of different enzymes and compounds produced by rhizobacteria related to the process of antagonism to plant-parasitic nematodes.

This is a preview of subscription content, log in to check access.

References

  1. Aballay E, Ordenes P, Mårtensson A, Persson P (2013) Effects of rhizobacteria on parasitism by Meloidogyne ethiopica on grapevines. Eur J Plant Pathol 135:137–145. doi:10.1007/s10658-012-0073-7

    CAS  Article  Google Scholar 

  2. Ahmad K, Ismail SI (2016) Utilization of Biomaterials as Soil Amendments and Crop Protection Agents in Integrated Nematode Management. In: Hakeem KR, Akhtar MS, Abdullah SNA (eds) Plant, Soil and Microbes. Springer, Cham, pp 225–251

    Google Scholar 

  3. Akhtar M, Malik A (2000) Roles of organic soil amendments and soil organisms in the biological control of plant-parasitic nematodes: a review. Bioresour Technol 74:35–47. doi:10.1016/S0960-8524(99)00154-6

    CAS  Article  Google Scholar 

  4. Ali NI, Siddiqui IA, Shahid Shaukat S, Zaki M (2002) Nematicidal activity of some strains of Pseudomonas spp. Soil Biol Biochem 34:1051–1058. doi:10.1016/S0038-0717(02)00029-9

    CAS  Article  Google Scholar 

  5. Almaghrabi OA, Massoud SI, Abdelmoneim TS (2013) Influence of inoculation with plant growth promoting rhizobacteria (PGPR) on tomato plant growth and nematode reproduction under greenhouse conditions. Saudi J Biol Sci 20:57–61. doi:10.1016/j.sjbs.2012.10.004

    Article  Google Scholar 

  6. Bao Y, Chen S, Neher D (2011) Effect of soil disturbance and biocides on nematode communities and extracellular enzyme activity in soybean cyst nematode suppressive soil. Nematology 13:687–699. doi:10.1163/138855410X541230

    CAS  Article  Google Scholar 

  7. Becker JO (2014) Plant Health Management: Crop Protection with Nematicides. Encyclopedia of Agriculture and Food Systems. Elsevier, London, pp 400–407

    Google Scholar 

  8. Bird AF, Bird J (1991) The Egg. The Structure of Nematodes, 2nd edn. Elsevier, London, pp 7–43

    Google Scholar 

  9. Blumer C, Haas D (2000) Mechanism, regulation, and ecological role of bacterial cyanide biosynthesis. Arch Microbiol 173:170–177. doi:10.1007/s002039900127

    CAS  Article  Google Scholar 

  10. Burkett-Cadena M, Kokalis-Burelle N, Lawrence KS et al (2008) Suppressiveness of root-knot nematodes mediated by rhizobacteria. Biol Control 47:55–59. doi:10.1016/j.biocontrol.2008.07.008

    Article  Google Scholar 

  11. Castaneda-Alvarez C, Prodan S, Rosales IM, Aballay E (2016) Exoenzymes and metabolites related to the nematicidal effect of rhizobacteria on Xiphinema index Thorne & Allen. J Appl Microbiol 120:413–424. doi:10.1111/jam.12987

    CAS  Article  Google Scholar 

  12. Chan YL, Cai D, Taylor PWJ et al (2010) Adverse effect of the chitinolytic enzyme PjCHI-1 in transgenic tomato on egg mass production and embryonic development of Meloidogyne incognita. Plant Pathol 59:922–930. doi:10.1111/j.1365-3059.2010.02314.x

    CAS  Article  Google Scholar 

  13. Chen L, Jiang H, Cheng Q et al (2015) Enhanced nematicidal potential of the chitinase pachi from Pseudomonas aeruginosa in association with Cry21Aa. Sci Rep 5:14395. doi:10.1038/srep14395

    CAS  Article  Google Scholar 

  14. Cretoiu MS, Korthals GW, Visser JHM, Van Elsas D (2013) Chitin amendment increases soil suppressiveness toward plant pathogens and modulates the actinobacterial and oxalobacteraceal communities in an experimental. Agric Field 79:5291–5301. doi:10.1128/AEM.01361-13

    CAS  Google Scholar 

  15. Cronin D, Fenton A, Dunne C et al (1997a) Role of 2,4-diacetylphloroglucinol in the interactions of the biocontrol pseudomonad strain F113 with the potato cyst nematode Globodera rostochiensis. Appl Environ Microbiol 63:1357–1361

    CAS  Google Scholar 

  16. Cronin D, Moënne-Loccoz Y, Dunne C, O’Gara F (1997b) Inhibition of egg hatch of the potato cyst nematode Globodera rostochiensis by chitinase-producing bacteria. Eur J Plant Pathol 103:433–440. doi:10.1023/A:1008662729757

    Article  Google Scholar 

  17. Curtis RHC, Jones JT, Davies KG et al (2011) Biological Control of Plant-Parasitic Nematodes. In: Davies K, Spiegel Y (eds) Biological Control of Plant-Parasitic Nematodes: Building Coherence between Microbial Ecology and Molecular Mechanisms, Progress in Biological Control. Springer, Dordrecht, p 311

    Google Scholar 

  18. Fujimoto D, Kanayh S (1973) Cuticlin: a noncollagen structural protein from Ascaris cuticle. Arch Biochem Biophys 157:1–6

    CAS  Article  Google Scholar 

  19. Gallagher LA, Manoil C (2001) Pseudomonas aeruginosa PAO1 kills Caenorhabditis elegans by cyanide poisoning. J Bacteriol 183:6207–6214. doi:10.1128/JB.183.21.6207

    CAS  Article  Google Scholar 

  20. Galper S, Cohn E, Chet I (1990) Nematicidal effect of collagen-amended soil and the influence of protease and collagenase. Rev Nematol 13:67–71

    CAS  Google Scholar 

  21. Gortari MC, Hours RA (2008) Fungal chitinases and their biological role in the antagonism onto nematode eggs. A review. Mycol Prog 7:221–238. doi:10.1007/s11557-008-0571-3

    Article  Google Scholar 

  22. Gu YQ, Mo MH, Zhou JP et al (2007) Evaluation and identification of potential organic nematicidal volatiles from soil bacteria. Soil Biol Biochem 39:2567–2575. doi:10.1016/j.soilbio.2007.05.011

    CAS  Article  Google Scholar 

  23. Guo S, Liu M, Peng D et al (2008) New strategy for isolating novel nematicidal crystal protein genes from Bacillus thuringiensis strain YBT-1518. Appl Environ Microbiol 74:6997–7001. doi:10.1128/AEM.01346-08

    CAS  Article  Google Scholar 

  24. Huang X, Tian B, Niu Q et al (2005) An extracellular protease from Brevibacillus laterosporus G4 without parasporal crystals can serve as a pathogenic factor in infection of nematodes. Res Microbiol 156:719–727. doi:10.1016/j.resmic.2005.02.006

    CAS  Article  Google Scholar 

  25. Huang Y, Xu C, Ma L et al (2010) Characterisation of volatiles produced from Bacillus megaterium YFM3.25 and their nematicidal activity against Meloidogyne incognita. Eur J Plant Pathol 126:417–422. doi:10.1007/s10658-009-9550-z

    CAS  Article  Google Scholar 

  26. Iatsenko I, Boichenko I, Sommer RJ (2014a) Bacillus thuringiensis DB27 produces two novel protoxins, Cry21Fa1 and Cry21Ha1, which act synergistically against nematodes. Appl Environ Microbiol 80:3266–3275. doi:10.1128/AEM.00464-14

    Article  Google Scholar 

  27. Iatsenko I, Nikolov A, Sommer R (2014b) Identification of Distinct Bacillus thuringiensis 4A4 nematicidal factors using the model nematodes Pristionchus pacificus and Caenorhabditis elegans. Toxins (Basel) 6:2050–2063. doi:10.3390/toxins6072050

    CAS  Article  Google Scholar 

  28. Jung WJ, Kim KY, Park YS et al (2014) Purification and properties of a Meloidogyne-antagonistic chitinase from Lysobacter capsici YS1215. Nematology 16:63–72. doi:10.1163/15685411-00002745

    Article  Google Scholar 

  29. Khan A, Williams KL, Nevalainen HKM (2004) Effects of Paecilomyces lilacinus protease and chitinase on the eggshell structures and hatching of Meloidogyne javanica juveniles. Biol Control 31:346–352. doi:10.1016/j.biocontrol.2004.07.011

    CAS  Article  Google Scholar 

  30. Khan A, Shaukat SS, Islam S, Khan A (2012) Evaluation of fluorescent pseudomonad isolates for their activity against some plant-parasitic nematodes. Am J Agric Environ Sci 12:1496–1506. doi:10.5829/idosi.aejaes.2012.12.11.1841

    CAS  Google Scholar 

  31. Krechel A, Faupel A, Hallmann J et al (2002) Potato-associated bacteria and their antagonistic potential towards plant-pathogenic fungi and the plant-parasitic nematode Meloidogyne incognita (Kofoid & White) Chitwood. Can J Microbiol 48:772–786. doi:10.1139/w02-071

    CAS  Article  Google Scholar 

  32. Kumar T, Kang SC, Maheshwari DK (2005) Nematicidal activity of some fluorescent pseudomonads on cyst forming nematode, Heterodera cajani and growth of Sesamum indicum var. RT1. Agric Chem Biotechnol 48:161–166

    Google Scholar 

  33. Lee JH, Ma KC, Ko SJ et al (2011) Nematicidal activity of a nonpathogenic biocontrol bacterium, Pseudomonas chlororaphis O6. Curr Microbiol 62:746–751. doi:10.1007/s00284-010-9779-y

    CAS  Article  Google Scholar 

  34. Lee YS, Park YS, Anees M et al (2013) Nematicidal activity of Lysobacter capsici YS1215 and the role of gelatinolytic proteins against root-knot nematodes. Biocontrol Sci Technol 23:1427–1441. doi:10.1080/09583157.2013.840359

    Article  Google Scholar 

  35. Lee YS, Nguyen XH, Naing KW et al (2014) Role of lytic enzymes secreted by Lysobacter capsici YS1215 in the control of root-knot nematode of tomato plants. Indian J Microbiol 55:74–80. doi:10.1007/s12088-014-0499-z

    Article  Google Scholar 

  36. Li XQ, Tan A, Voegtline M et al (2008) Expression of Cry5B protein from Bacillus thuringiensis in plant roots confers resistance to root-knot nematode. Biol Control 47:97–102. doi:10.1016/j.biocontrol.2008.06.007

    Article  Google Scholar 

  37. Lian LH, Tian BY, Xiong R et al (2007) Proteases from Bacillus: a new insight into the mechanism of action for rhizobacterial suppression of nematode populations. Lett Appl Microbiol 45:262–269. doi:10.1111/j.1472-765X.2007.02184.x

    CAS  Article  Google Scholar 

  38. Mercer CF, Greenwood DR, Grant JL (1992) Effect of plant and microbial chitinases on the eggs and juveniles of Meloidogyne hapla Chitwood (Nematoda: Tylenchida). Nematologica 38:227–236. doi:10.1163/187529292X00199

    Article  Google Scholar 

  39. Meyer SLF, Halbrendt JM, Carta LK et al (2009) Toxicity of 2,4-diacetylphloroglucinol (DAPG) to plant-parasitic and bacterial-feeding nematodes. J Nematol 41:274–280

    CAS  Google Scholar 

  40. Miller DL, Roth MB (2007) Hydrogen sulfide increases thermotolerance and lifespan in Caenorhabditis elegans. Proc Natl Acad Sci USA 104:20618–20622. doi:10.1073/pnas.0710191104

    CAS  Article  Google Scholar 

  41. Millew PM, Sands DC (1977) Effects of hydrolytic enzymes on plant-parasitic nematodes. J Nematol 9:192–197

    Google Scholar 

  42. Mota LCBM, dos Santos MA (2016) Chitin and chitosan on Meloidogyne javanica management and on chitinase activity in tomato plants. Trop Plant Pathol 41:84–90. doi:10.1007/s40858-016-0072-x

    Article  Google Scholar 

  43. Neidig N, Paul RJ, Scheu S, Jousset A (2011) Secondary metabolites of Pseudomonas fluorescens CHA0 drive complex non-trophic interactions with bacterivorous nematodes. Microb Ecol 61:853–859. doi:10.1007/s00248-011-9821-z

    CAS  Article  Google Scholar 

  44. Niu Q, Huang X, Zhang L et al (2006) A neutral protease from Bacillus nematocida, another potential virulence factor in the infection against nematodes. Arch Microbiol 185:439–448. doi:10.1007/s00203-006-0112-x

    CAS  Article  Google Scholar 

  45. Niu Q, Huang X, Zhang L et al (2007) Functional identification of the gene bace16 from nematophagous bacterium Bacillus nematocida. Appl Microbiol Biotechnol 75:141–148. doi:10.1007/s00253-006-0794-7

    CAS  Article  Google Scholar 

  46. Noreen R, Ali SA, Hasan KA et al (2015) Evaluation of biocontrol potential of fluorescent Pseudomonas associated with root nodules of mungbean. Crop Prot 75:18–24. doi:10.1016/j.cropro.2015.04.018

    Article  Google Scholar 

  47. Oliveira DF, Santos Junior HM, Dos Nunes AS et al (2014) Purification and identification of metabolites produced by Bacillus cereus and B. subtilis active against Meloidogyne exigua, and their in silico interaction with a putative phosphoribosyltransferase from M. incognita. An Acad Bras Cienc 86:525–538. doi:10.1590/0001-3765201402412

    CAS  Article  Google Scholar 

  48. Padgham JL, Sikora RA (2007) Biological control potential and modes of action of Bacillus megaterium against Meloidogyne graminicola on rice. Crop Prot 26:971–977. doi:10.1016/j.cropro.2006.09.004

    Article  Google Scholar 

  49. Page AP, Stepek G, Winter AD, Pertab D (2014) Enzymology of the nematode cuticle: a potential drug target? Int J Parasitol Drugs Drug Resist 4:133–141. doi:10.1016/j.ijpddr.2014.05.003

    Article  Google Scholar 

  50. Paiva G, Proença DN, Francisco R et al (2013) Nematicidal bacteria associated to pinewood nematode produce extracellular proteases. PLoS ONE 8:e79705. doi:10.1371/journal.pone.0079705

    CAS  Article  Google Scholar 

  51. Perry RN, Trett MW (1986) Ultrastructure of the eggshell of Heterodera schachtii and H. glycines (Nematoda: Tylenchida). Rev Nématologie 9:399–403

    Google Scholar 

  52. Rahul S, Chandrashekhar P, Hemant B et al (2014) Nematicidal activity of microbial pigment from Serratia marcescens. Nat Prod Res 28:1399–1404. doi:10.1080/14786419.2014.904310

    CAS  Article  Google Scholar 

  53. Ray C, Hussey RS (1995) Evidence for proteolytic processing of a cuticle collagen in a plant-parasitic nematode. Mol Biochem Parasitol 72:243–246

    CAS  Article  Google Scholar 

  54. Rodriguez-Kabana R, Jordan JW, Hollis JP (1965) Nematodes: biological Control in Rice Fields: Role of Hydrogen Sulfide. Science(80-) 148:524–526. doi:10.1126/science.148.3669.524

    CAS  Google Scholar 

  55. Salehi JG, Seifinejad A, Saeedizadeh A et al (2008) Molecular detection of nematicidal crystalliferous Bacillus thuringiensis strains of Iran and evaluation of their toxicity on free-living and plant-parasitic nematodes. Can J Microbiol 54:812–822. doi:10.1139/w08-074

    Article  Google Scholar 

  56. Santoro MV, Zygadlo J, Giordano W, Banchio E (2011) Volatile organic compounds from rhizobacteria increase biosynthesis of essential oils and growth parameters in peppermint (Mentha piperita). Plant Physiol Biochem 49:1177–1182. doi:10.1016/j.plaphy.2011.07.016

    CAS  Article  Google Scholar 

  57. Sela S, Schickler H, Chet I, Spiegel Y (1998) Purification and characterization of a Bacillus cereus collagenolytic/proteolytic enzyme and its effect on Meloidogyne javanica cuticular proteins. Eur J Plant Pathol 104:59–67

    CAS  Article  Google Scholar 

  58. Shanahan P, Sullivan DJO, Simpson P, Jeremy D (1992) Production Isolation of 2, 4-diacetylphloroglucinol from a fluorescent pseudomonad and investigation of physiological parameters influencing its production. Appl Environ Microbiol 28:353–358

    Google Scholar 

  59. Siddiqui IA (2000) Effects of cell suspension and cell-free culture filtrate of Pseudomonas aeruginosa in the control of root rot-root knot disease complex of tomato (Lycopersicon esculentum Mill.). Acta Agrobot 53:47–55

    Article  Google Scholar 

  60. Siddiqui IA, Shaukat S (2003) Suppression of root-knot disease by Pseudomonas fluorescens CHA0 in tomato: importance of bacterial secondary metabolite, 2,4-diacetylpholoroglucinol. Soil Biol Biochem 35:1615–1623. doi:10.1016/j.soilbio.2003.08.006

    CAS  Article  Google Scholar 

  61. Siddiqui IA, Shaukat SS, Khan GH, Ali NI (2003) Suppression of Meloidogyne javanica by Pseudomonas aeruginosa IE-6S+ in tomato: the influence of NaCl, oxygen and iron levels. Soil Biol Biochem 35:1625–1634. doi:10.1016/j.soilbio.2003.08.007

    CAS  Article  Google Scholar 

  62. Siddiqui IA, Haas D, Heeb S (2005) Extracellular protease of Pseudomonas fluorescens CHA0, a biocontrol factor with activity against the root-knot nematode Meloidogyne incognita. Appl Environ Microbiol 71:5646–5649. doi:10.1128/AEM.71.9.5646-5649.2005

    CAS  Article  Google Scholar 

  63. Siddiqui IA, Shaukat SS, Sheikh IH, Khan A (2006) Role of cyanide production by Pseudomonas fluorescens CHA0 in the suppression of root-knot nematode, Meloidogyne javanica in tomato. World J Microbiol Biotechnol 22:641–650. doi:10.1007/s11274-005-9084-2

    CAS  Article  Google Scholar 

  64. Thakore Y (2006) The biopesticide market for global agricultural use. Ind Biotechnol 2:194–208. doi:10.1089/ind.2006.2.194

    Article  Google Scholar 

  65. Tian H, Riggs RD, Crippen DL (2000) Control of soybean cyst nematode by chitinolytic bacteria with chitin substrate. J Nematol 32:370–376

    CAS  Google Scholar 

  66. Tian B, Yang J, Lian L et al (2007a) Role of an extracellular neutral protease in infection against nematodes by Brevibacillus laterosporus strain G4. Appl Microbiol Biotechnol 74:372–380. doi:10.1007/s00253-006-0690-1

    CAS  Article  Google Scholar 

  67. Tian B, Yang J, Zhang K (2007b) Bacteria used in the biological control of plant-parasitic nematodes: populations, mechanisms of action, and future prospects. FEMS Microbiol Ecol 61:197–213. doi:10.1111/j.1574-6941.2007.00349.x

    CAS  Article  Google Scholar 

  68. van Frankenhuyzen K (2009) Insecticidal activity of Bacillus thuringiensis crystal proteins. J Invertebr Pathol 101:1–16. doi:10.1016/j.jip.2009.02.009

    Article  Google Scholar 

  69. Veronico P, Gray LJ, Jones JT et al (2001) Nematode chitin synthases: gene structure, expression and function in Caenorhabditis elegans and the plant parasitic nematode Meloidogyne artiellia. Mol Genet Genomics 266:28–34. doi:10.1007/s004380100513

    CAS  Article  Google Scholar 

  70. Vining LC (1990) Functions of secondary metabolites. Annu Rev Microbiol 44:395–427. doi:10.1146/annurev.mi.44.100190.002143

    CAS  Article  Google Scholar 

  71. Wei L, Shao Y, Wan J et al (2014) Isolation and characterization of a rhizobacterial antagonist of root-knot nematodes. PLOS ONE 9:e85988. doi:10.1371/journal.pone.0085988

    Article  Google Scholar 

  72. Westerdahl BB, Carlson HL, Grant J et al (1992) Management of plant-parasitic nematodes with a chitin-urea soil amendment and other materials. J Nematol 24:669–680

    CAS  Google Scholar 

  73. Wharton DA (1983) The production and functional morphology of helminth egg-shells. Parasitology 86:85–97

    Article  Google Scholar 

  74. Woo-Jin J, Jung S-J, Park R-D et al (2002) Effect of chitinase produced form Paneibacillus illinoisensis on egg hatching of root-knot nematode, Meloidogyne spp. J Microbiol Biotechnol Biotechnol 12:865–871

    Google Scholar 

  75. Wright DJ, Perry RN (2006) Reproduction, physiology and biochemistry. In: Perry RN, Moens M (eds) Plant Nematology, 2nd edn. CABI, Wallingford, p 447

    Google Scholar 

  76. Yang J, Liang L, Li J, Zhang K-Q (2013) Nematicidal enzymes from microorganisms and their applications. Appl Microbiol Biotechnol 97:7081–7095. doi:10.1007/s00253-013-5045-0

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to C. Castaneda-Alvarez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Castaneda-Alvarez, C., Aballay, E. Rhizobacteria with nematicide aptitude: enzymes and compounds associated. World J Microbiol Biotechnol 32, 203 (2016). https://doi.org/10.1007/s11274-016-2165-6

Download citation

Keywords

  • Biological control
  • Enzymes
  • Metabolites
  • Plant-parasitic nematodes
  • Toxins