Skip to main content
Log in

Halophiles: biology, adaptation, and their role in decontamination of hypersaline environments

  • REVIEW
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The unique cellular enzymatic machinery of halophilic microbes allows them to thrive in extreme saline environments. That these microorganisms can prosper in hypersaline environments has been correlated with the elevated acidic amino acid content in their proteins, which increase the negative protein surface potential. Because these microorganisms effectively use hydrocarbons as their sole carbon and energy sources, they may prove to be valuable bioremediation agents for the treatment of saline effluents and hypersaline waters contaminated with toxic compounds that are resistant to degradation. This review highlights the various strategies adopted by halophiles to compensate for their saline surroundings and includes descriptions of recent studies that have used these microorganisms for bioremediation of environments contaminated by petroleum hydrocarbons. The known halotolerant dehalogenase-producing microbes, their dehalogenation mechanisms, and how their proteins are stabilized is also reviewed. In view of their robustness in saline environments, efforts to document their full potential regarding remediation of contaminated hypersaline ecosystems merits further exploration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbasian F, Lockington R, Mallavarapu M, Naidu R (2015) A comprehensive review of aliphatic hydrocarbon biodegradation by bacteria. Appl Biochem Biotechnol 176:670–699. doi:10.1007/s12010-015-1603-5

    Article  CAS  Google Scholar 

  • Abdallah MB, Karray F, Mhiri N, Cayol J-L, Tholozan J-L, Alazard D, Sayadi S (2015) Characterization of Sporohalobacter salinus sp. nov., an anaerobic, halophilic, fermentative bacterium isolated from a hypersaline lake. Int J Syst Evol Microbiol 65:543–548. doi:10.1099/ijs.0.066845-0

    Article  CAS  Google Scholar 

  • Abdeljabbar H, Cayol J-L, Ben Hania W, Boudabous A, Sadfi N, Fardeau M-L (2013) Halanaerobium sehlinense sp. nov., an extremely halophilic, fermentative, strictly anaerobic bacterium from sediments of the hypersaline lake Sehline Sebkha. Int J Syst Evol Microbiol 63:2069–2074. doi:10.1099/ijs.0.040139-0

    Article  CAS  Google Scholar 

  • Abed RMM, Köster J (2005) The direct role of aerobic heterotrophic bacteria associated with cyanobacteria in the degradation of oil compounds. Int Biodeterior Biodegrad 55:29–37. doi:10.1016/j.ibiod.2004.07.001

    Article  CAS  Google Scholar 

  • Abed RMM, Al-Thukair A, De Beer D (2006) Bacterial diversity of a cyanobacterial mat degrading petroleum compounds at elevated salinities and temperatures. FEMS Microbiol Ecol 57:290–301. doi:10.1111/j.1574-6941.2006.00113.x

    Article  CAS  Google Scholar 

  • Abed RMM, Al-Kharusi S, Prigent S, Headley T (2014) Diversity, distribution and hydrocarbon biodegradation capabilities of microbial communities in oil-contaminated cyanobacterial Mats from a constructed wetland. PLoS One 9:e114570. doi:10.1371/journal.pone.0114570

    Article  CAS  Google Scholar 

  • Abid Z, Cross AJ, Sinha R (2014) Meat, dairy, and cancer. Am J Clin Nutr 100:386S–393S. doi:10.3945/ajcn.113.071597

    Article  CAS  Google Scholar 

  • Adamiak J, Otlewska A, Gutarowska B (2015) Halophilic microbial communities in deteriorated buildings. World J Microbiol Biotechnol 31:1489–1499. doi:10.1007/s11274-015-1913-3

    Article  CAS  Google Scholar 

  • Adebusoye SA, Ilori MO, Amund OO, Teniola OD, Olatope SO (2007) Microbial degradation of petroleum hydrocarbons in a polluted tropical stream. World J Microbiol Biotechnol 23:1149–1159. doi:10.1007/s11274-007-9345-3

    Article  CAS  Google Scholar 

  • Ahmed AT, Othman MA, Sarwade VD, Gawai K (2012) Degradation of anthracene by Alkaliphilic bacteria Bacillus badius. Environ Pollut 1:97. doi:10.5539/ep.v1n2p97

    Article  CAS  Google Scholar 

  • Al-Mailem DM, Sorkhoh NA, Al-Awadhi H, Eliyas M, Radwan SS (2010) Biodegradation of crude oil and pure hydrocarbons by extreme halophilic archaea from hypersaline coasts of the Arabian Gulf. Extremophiles 14:321–328. doi:10.1007/s00792-010-0312-9

    Article  CAS  Google Scholar 

  • Al-Mailem DM, Eliyas M, Radwan SS (2013) Oil-bioremediation potential of two hydrocarbonoclastic, diazotrophic Marinobacter strains from hypersaline areas along the Arabian Gulf coasts. Extremophiles 17:463–470. doi:10.1007/s00792-013-0530-z

    Article  CAS  Google Scholar 

  • Al-Mailem DM, Eliyas M, Khanafer M, Radwan SS (2015) Biofilms constructed for the removal of hydrocarbon pollutants from hypersaline liquids. Extremophiles 19:189–196. doi:10.1007/s00792-014-0698-x

    Article  CAS  Google Scholar 

  • Almeida-Dalmet S, Sikaroodi M, Gillevet PM, Litchfield CD, Baxter BK (2015) Temporal study of the microbial diversity of the North Arm of Great Salt Lake, Utah, US. Microorganisms 3:310–326. doi:10.3390/microorganisms3030310

    Article  Google Scholar 

  • Al-Mueini R, Al-Dalali M, Al-Amri IS, Patzelt H (2007) Hydrocarbon degradation at high salinity by a novel extremely halophilic actinomycete. Environ Chem 4:5–7. doi:10.1071/EN06019

    Article  CAS  Google Scholar 

  • Amoozegar MA, Malekzadeh F, Malik KA (2003) Production of amylase by newly isolated moderate halophile, Halobacillus sp strain MA-2. J Microbiol Methods 52:353–359. doi:10.1016/S0167-7012(02)00191-4

    Article  CAS  Google Scholar 

  • Amoozegar MA, Bagheri M, Didari M, Shahzedeh Fazeli SA, Schumann P, Sánchez-Porro C, Ventosa A (2013a) Saliterribacillus persicus gen. nov., sp. nov., a moderately halophilic bacterium isolated from a hypersaline lake. Int J Syst Evol Microbiol 63:345–351. doi:10.1099/ijs.0.041640-0

    Article  Google Scholar 

  • Amoozegar MA, Makhdoumi-Kakhki A, Ramezani M, Nikou MM, Fazeli SAS, Schumann P, Ventosa A (2013b) Limimonas halophila gen. nov., sp. nov., an extremely halophilic bacterium in the family Rhodospirillaceae. Int J Syst Evol Microbiol 63:1562–1567. doi:10.1099/ijs.0.041236-0

    Article  Google Scholar 

  • Amoozegar MA, Samareh-Abolhasani B, Shafiei M, Didari M, Hamedi J (2013c) Production of halothermotolerant α-amylase from a moderately halophilic bacterium, Nesterenkonia Strain F. Prog Biol Sci 2:85–97

    Google Scholar 

  • Amoozegar MA, Shahinpei A, Shahzadeh Fazeli SA, Schumann P, Spröer C, Ventosa A (2016) Aliidiomarina iranensis sp. nov., a haloalkaliphilic bacterium from a coastal-marine wetland. Int J Syst Evolut Microbiol. doi:10.1099/ijsem.0.000996

    Google Scholar 

  • Antón J, Oren A, Benlloch S, Rodríguez-Valera F, Amann R, Rosselló-Mora R (2002) Salinibacter ruber gen. nov., sp. nov., a novel, extremely halophilic member of the Bacteria from saltern crystallizer ponds. Int J Syst Evol Microbiol 52:485–491. doi:10.1099/00207713-52-2-485

    Article  Google Scholar 

  • Antoniou E, Fodelianakis S, Korkakaki E, Kalogerakis N (2015) Biosurfactant production from marine hydrocarbon-degrading consortia and pure bacterial strains using crude oil as carbon source. Front Microbiol. doi:10.3389/fmicb.2015.00274

    Google Scholar 

  • Atlas RM, Bartha R (1972) Degradation and mineralization of petroleum in sea water: limitation by nitrogen and phosphorous. Biotechnol Bioeng 14:309–318. doi:10.1002/bit.260140304

    Article  CAS  Google Scholar 

  • Averhoff B, Müller V (2010) Exploring research frontiers in microbiology: recent advances in halophilic and thermophilic extremophiles. Res Microbiol 161:506–514. doi:10.1016/j.resmic.2010.05.006

    Article  CAS  Google Scholar 

  • Baas-Becking LGM (1934) Geobiologie of inleiding tot de milieukunde. Netherland

  • Badejo AC, Badejo AO, Shin KH, Chai YG (2013) A gene expression study of the activities of aromatic ring-cleavage dioxygenases in Mycobacterium gilvum PYR-GCK to changes in salinity and pH during pyrene degradation. PloS One 8:e58066. doi:10.1371/journal.pone.0058066

    Article  CAS  Google Scholar 

  • Baliga NS, Bonneau R, Facciotti MT, Pan M, Glusman G, Deutsch EW, Shannon P, Chiu Y, Weng RS, Gan RR (2004) Genome sequence of Haloarcula marismortui: a halophilic archaeon from the Dead Sea. Genome Res 14:2221–2234. doi:10.1101/gr.2700304

    Article  CAS  Google Scholar 

  • Ball A, Truskewycz A (2013) Polyaromatic hydrocarbon exposure: an ecological impact ambiguity. Environ Sci Pollut Res 20:4311–4326. doi:10.1007/s11356-013-1620-2

    Article  CAS  Google Scholar 

  • Barron MG (2012) Ecological impacts of the deepwater horizon oil spill: implications for immunotoxicity. Toxicol Pathol 40:315–320. doi:10.1177/0192623311428474

    Article  CAS  Google Scholar 

  • Bass-Becking LGM (1931) Historical notes on salt and salt-manufacture. Sci Mon 32:434–446

    Google Scholar 

  • Baumgartner JG (1937) The salt limits and thermal stability of a new species of anaerobic halophile. J Food Sci 2:321–329. doi:10.1111/j.1365-2621.1937.tb16523.x

    Article  CAS  Google Scholar 

  • Bautista V, Esclapez J, Pérez-Pomares F, Martínez-Espinosa RM, Camacho M, Bonete MJ (2012) Cyclodextrin glycosyltransferase: a key enzyme in the assimilation of starch by the halophilic archaeon Haloferax mediterranei. Extremophiles 16:147–159. doi:10.1007/s00792-011-0414-z

    Article  CAS  Google Scholar 

  • Bayley ST, Morton RA, Lanyi JK (1978) Recent developments in the molecular biology of extremely halophilic bacteria. CRC Crit Rev Microbiol 6:151–206. doi:10.3109/10408417809090622

    Article  CAS  Google Scholar 

  • Behera BK, Das P, Maharana J, Paria P, Mandal SN, Meena DK, Sharma AP, Jayarajan R, Dixit V, Verma A (2015) Draft genome sequence of the extremely halophilic bacterium Halomonas salina strain CIFRI1, isolated from the east coast of India. Genome Announc 3:e01314–e01321. doi:10.1128/genomeA.01321-14

    Google Scholar 

  • Bell E (2012) Life at extremes: environments, organisms, and strategies for survival. Cabi. doi:10.1079/9781845938147.0000

    Google Scholar 

  • Bertrand JC, Almallah M, Acquaviva M, Mille G (1990) Biodegradation of hydrocarbons by an extremely halophilic archaebacterium. Lett Appl Microbiol 11:260–263. doi:10.1111/j.1472-765X.1990.tb00176.x

    Article  CAS  Google Scholar 

  • Besseling E, Wegner A, Foekema EM, van den Heuvel-Greve MJ, Koelmans AA (2013) Effects of microplastic on fitness and PCB bioaccumulation by the lugworm Arenicola marina (L.). Environ Sci Technol 47:593–600. doi:10.1021/es302763x

    Article  CAS  Google Scholar 

  • Bierkens J, Geerts L (2014) Environmental hazard and risk characterisation of petroleum substances: a guided “walking tour” of petroleum hydrocarbons. Environ Int 66:182–193. doi:10.1016/j.envint.2014.01.030

    Article  CAS  Google Scholar 

  • Biswas J, Mandal S, Paul AK (2015) Production, partial purification and some bio-physicochemical properties of EPS produced by Halomonas xianhensis SUR308 isolated from a saltern environment. J Biol Act Prod Nat 5:108–119. doi:10.1080/22311866.2015.1038852

    CAS  Google Scholar 

  • Bolhuis H, Palm P, Wende A, Falb M, Rampp M, Rodriguez-Valera F, Pfeiffer F, Oesterhelt D (2006) The genome of the square archaeon Haloquadratum walsbyi: life at the limits of water activity. BMC Genom 7:1–12. doi:10.1186/1471-2164-7-169

    Article  CAS  Google Scholar 

  • Bonete MJ, Ferrer J, Pire C, Penades M, Ruiz JL (2000) 2-Hydroxyacid dehydrogenase from Haloferax mediterranei, a D-isomer-specific member of the 2-hydroxyacid dehydrogenase family. Biochimie 82:1143–1150. doi:10.1016/S0300-9084(00)01193-7

    Article  CAS  Google Scholar 

  • Borzenkov IA, Milekhina EI, Gotoeva MT, Rozanova EP, Belyaev SS (2006) The properties of hydrocarbon-oxidizing bacteria isolated from the oilfields of Tatarstan, Western Siberia, and Vietnam. Microbiology 75:66–72. doi:10.1134/S0026261706010127

    Article  CAS  Google Scholar 

  • Boström C-E, Gerde P, Hanberg A, Jernström B, Johansson C, Kyrklund T, Rannug A, Törnqvist M, Victorin K, Westerholm R (2002) Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air. Environ Health Perspect 110:451. doi:10.1289/ehp.02110s3451

    Article  Google Scholar 

  • Boujelben I, Yarza P, Almansa C, Villamor J, Maalej S, Antón J, Santos F (2012) Virioplankton community structure in Tunisian solar salterns. Appl Environ Microbiol 78:7429–7437. doi:10.1128/AEM.01793-12

    Article  CAS  Google Scholar 

  • Britton KL, Baker PJ, Fisher M, Ruzheinikov S, Gilmour DJ, Bonete M-J, Ferrer J, Pire C, Esclapez J, Rice DW (2006) Analysis of protein solvent interactions in glucose dehydrogenase from the extreme halophile Haloferax mediterranei. Proc Natl Acad Sci USA 103:4846–4851. doi:10.1073/pnas.0508854103

    Article  CAS  Google Scholar 

  • Cai L, Tan D, Aibaidula G, Dong X-R, Chen J-C, Tian W-D, Chen G-Q (2011) Comparative genomics study of polyhydroxyalkanoates (PHA) and ectoine relevant genes from Halomonas sp. TD01 revealed extensive horizontal gene transfer events and co-evolutionary relationships. Microb Cell Fact 10:88. doi:10.1186/1475-2859-10-88

    Article  CAS  Google Scholar 

  • Cannon JS, Cannon MA (2002) The southern Pacific Railroad trestle-past and present Great Salt Lake, an overview of change, pp 283–294

  • Canovas D, Vargas C, Csonka LN, Ventosa A, Nieto JJ (1996) Osmoprotectants in Halomonas elongata: high-affinity betaine transport system and choline-betaine pathway. J Bacteriol 178:7221–7226

    CAS  Google Scholar 

  • Caton TM, Witte LR, Ngyuen HD, Buchheim JA, Buchheim MA, Schneegurt MA (2004) Halotolerant aerobic heterotrophic bacteria from the Great Salt Plains of Oklahoma. Microb Ecol 48:449–462. doi:10.1007/s00248-004-0211-7

    Article  CAS  Google Scholar 

  • Chamkha M, Mnif S, Sayadi S (2008) Isolation of a thermophilic and halophilic tyrosol-degrading Geobacillus from a Tunisian high-temperature oil field. FEMS Microbiol Lett 283:23–29. doi:10.1111/j.1574-6968.2008.01136.x

    Article  CAS  Google Scholar 

  • Chandra S, Sharma R, Singh K, Sharma A (2013) Application of bioremediation technology in the environment contaminated with petroleum hydrocarbon. Ann Microbiol 63:417–431. doi:10.1007/s13213-012-0543-3

    Article  CAS  Google Scholar 

  • Chen Y-G, Cui X-L, Pukall R, Li H-M, Yang Y-L, Xu L-H, Wen M-L, Peng Q, Jiang C-L (2007) Salinicoccus kunmingensis sp. nov., a moderately halophilic bacterium isolated from a salt mine in Yunnan, south-west China. Int J Syst Evol Microbiol 57:2327–2332. doi:10.1099/ijs.0.64783-0

    Article  CAS  Google Scholar 

  • Chen J, Wong MH, Wong YS, Tam NFY (2008) Multi-factors on biodegradation kinetics of polycyclic aromatic hydrocarbons (PAHs) by Sphingomonas sp. a bacterial strain isolated from mangrove sediment. Mar Pollut Bull 57:695–702. doi:10.1016/j.marpolbul.2008.03.013

    Article  CAS  Google Scholar 

  • Chen Y-G, Hao D-F, Chen Q-H, Zhang Y-Q, Liu J-B, He J-W, Tang S-K, Li W-J (2010) Bacillus hunanensis sp. nov., a slightly halophilic bacterium isolated from non-saline forest soil. Antonie Van Leeuwenhoek 99:481–488. doi:10.1007/s10482-010-9512-7

    Article  Google Scholar 

  • Chen Y-G, Zhang Y-Q, Chen Q-H, Klenk H-P, He J-W, Tang S-K, Cui X-L, Li W-J (2011) Bacillus xiaoxiensis sp. nov., a slightly halophilic bacterium isolated from non-saline forest soil. Int J Syst Evol Microbiol 61:2095–2100. doi:10.1099/ijs.0.026286-0

    Article  CAS  Google Scholar 

  • Chiba Y, Yoshida T, Ito N, Nishimura H, Imada C, Yasuda H, Sako Y (2009) Isolation of a bacterium possessing a haloacid dehalogenase from a marine sediment core. Microbes Environ 24:276–279. doi:10.1264/jsme2.ME09123

    Article  Google Scholar 

  • Christen P, Vega A, Casalot L, Simon G, Auria R (2012) Kinetics of aerobic phenol biodegradation by the acidophilic and hyperthermophilic archaeon Sulfolobus solfataricus 98/2. Biochem Eng J 62:56–61. doi:10.1016/j.bej.2011.12.012

    Article  CAS  Google Scholar 

  • Christian JHB, Waltho JA (1962) Solute concentrations within cells of halophilic and non-halophilic bacteria. Biochim Biophys Acta 65:506–508

    Article  CAS  Google Scholar 

  • Chua EM, Shimeta J, Nugegoda D, Morrison PD, Clarke BO (2014) Assimilation of polybrominated diphenyl ethers from microplastics by the marine amphipod, Allorchestes compressa. Environ Sci Technol 48:8127–8134. doi:10.1021/es405717z

    Article  CAS  Google Scholar 

  • Chuprom J, Bovornreungroj P, Ahmad M, Kantachote D, Dueramae S (2016) Approach toward enhancement of halophilic protease production by Halobacterium sp. strain LBU50301 using statistical design response surface methodology. Biotechnol Rep 10:17–28. doi:10.1016/j.btre.2016.02.004

    Article  Google Scholar 

  • Ciccarelli FD, Doerks T, von Mering C, Creevey CJ, Snel B, Bork P (2006) Toward automatic reconstruction of a highly resolved tree of life. Science 311:1283–1287. doi:10.1126/science.1123061

    Article  CAS  Google Scholar 

  • Cohen Y (2002) Bioremediation of oil by marine microbial mats. Int Microbiol 5:189–193. doi:10.1007/s10123-002-0089-5

    Article  CAS  Google Scholar 

  • Colwell RR, Walker JD, Cooney JJ (1977) Ecological aspects of microbial degradation of petroleum in the marine environment. CRC Crit Rev Microbiol 5:423–445. doi:10.3109/10408417709102813

    Article  CAS  Google Scholar 

  • Coppock RW, Mostrom MS, Khan AA, Semalulu SS (1995) Toxicology of oil field pollutants in cattle: a review. Vet Hum Toxicol 37:569–576

    CAS  Google Scholar 

  • Cummings SP, Gilmour DJ (1995) The effect of NaCl on the growth of a Halomonas species: accumulation and utilization of compatible solutes. Microbiology 141:1413–1418. doi:10.1099/13500872-141-6-1413

    Article  CAS  Google Scholar 

  • Dalvi S, Azetsu S, Patrauchan MA, Aktas DF, Fathepure BZ (2012) Proteogenomic elucidation of the initial steps in the benzene degradation pathway of a novel halophile, Arhodomonas sp. strain Rozel, isolated from a hypersaline environment. Appl Environ Microbiol 78:7309–7316. doi:10.1128/AEM.01327-12

    Article  CAS  Google Scholar 

  • DasSarma S, DasSarma P (2012) Halophiles. Encycl Life Sci. doi:10.1002/9780470015902.a0000394.pu

    Google Scholar 

  • DasSarma S, DasSarma P (2015) Halophiles and their enzymes: negativity put to good use. Curr Opin Microbiol 25:120–126. doi:10.1016/j.mib.2015.05.009

    Article  CAS  Google Scholar 

  • DasSarma S, Capes M, DasSarma P (2009) Haloarchaeal megaplasmids. In: Schwartz E (ed) Microbial megaplasmids. Springer, Berlin, pp 3–30. doi:10.1007/978-3-540-85467-8_1

    Chapter  Google Scholar 

  • DasSarma SL, Capes MD, DasSarma P, DasSarma S (2010) HaloWeb: the haloarchaeal genomes database. Saline Syst 6:1–4. doi:10.1186/1746-1448-6-12

    Article  CAS  Google Scholar 

  • Dastgheib SMM, Amoozegar MA, Khajeh K, Shavandi M, Ventosa A (2011a) Biodegradation of polycyclic aromatic hydrocarbons by a halophilic microbial consortium. Appl Microbiol Biotechnol 95:789–798. doi:10.1007/s00253-011-3706-4

    Article  CAS  Google Scholar 

  • Dastgheib SMM, Amoozegar MA, Khajeh K, Ventosa A (2011b) A halotolerant Alcanivorax sp. strain with potential application in saline soil remediation. Appl Microbiol Biotechnol 90:305–312

    Article  CAS  Google Scholar 

  • de Carvalho CCCR (2012) Adaptation of Rhodococcus erythropolis cells for growth and bioremediation under extreme conditions. Res Microbiol 163:125–136. doi:10.1016/j.resmic.2011.11.003

    Article  CAS  Google Scholar 

  • de Carvalho CCCR, da Fonseca MMR (2005) Degradation of hydrocarbons and alcohols at different temperatures and salinities by Rhodococcus erythropolis DCL14. FEMS Microbiol Ecol 51:389–399. doi:10.1016/j.femsec.2004.09.010

    Article  CAS  Google Scholar 

  • de Lourdes Moreno M, García MT, Ventosa A, Mellado E (2009) Characterization of Salicola sp. IC10, a lipase-and protease-producing extreme halophile. FEMS Microbiol Ecol 68:59–71. doi:10.1111/j.1574-6941.2009.00651.x

    Article  CAS  Google Scholar 

  • Deng M-C, Li J, Liang F-R, Yi M, Xu X-M, Yuan J-P, Peng J, Wu C-F, Wang J-H (2014) Isolation and characterization of a novel hydrocarbon-degrading bacterium Achromobacter sp. HZ01 from the crude oil-contaminated seawater at the Daya Bay, southern China. Mar Pollut Bull 83:79–86. doi:10.1016/j.marpolbul.2014.04.018

    Article  CAS  Google Scholar 

  • Denner EB, McGenity TJ, Busse H-J, Grant WD, Wanner G, Stan-Lotter H (1994) Halococcus salifodinae sp. nov., an archaeal isolate from an Austrian salt mine. Int J Syst Evol Microbiol 44:774–780. doi:10.1099/00207713-44-4-774

    Google Scholar 

  • Desplats P, Folco E, Salerno GL (2005) Sucrose may play an additional role to that of an osmolyte in Synechocystis sp. PCC 6803 salt-shocked cells. Plant Physiol Biochem 43:133–138. doi:10.1016/j.plaphy.2005.01.008

    Article  CAS  Google Scholar 

  • Díaz MP, Grigson SJW, Peppiatt CJ, Burgess JG (2000) Isolation and characterization of novel hydrocarbon-degrading euryhaline consortia from crude oil and mangrove sediments. Mar Biotechnol 2:522–532. doi:10.1007/s101260000037

    Article  Google Scholar 

  • Díaz MP, Boyd KG, Grigson SJW, Burgess JG (2002) Biodegradation of crude oil across a wide range of salinities by an extremely halotolerant bacterial consortium MPD-M, immobilized onto polypropylene fibers. Biotechnol Bioeng 79:145–153. doi:10.1002/bit.10318

    Article  CAS  Google Scholar 

  • Díaz-Cárdenas C, López G, Patel BKC, Baena S (2010) Dethiosulfovibrio salsuginis sp. nov., an anaerobic, slightly halophilic bacterium isolated from a saline spring. Int J Syst Evol Microbiol 60:850–853. doi:10.1099/ijs.0.010835-0

    Article  CAS  Google Scholar 

  • Dibble JT, Bartha R (1979) Effect of environmental parameters on the biodegradation of oil sludge. Appl Environ Microbiol 37:729–739

    CAS  Google Scholar 

  • Doronina NV, Trotsenko YA, Tourova TP (2000) Methylarcula marina gen. nov., sp. nov. and Methylarcula terricola sp. nov.: novel aerobic, moderately halophilic, facultatively methylotrophic bacteria from coastal saline environments. Int J Syst Evol Microbiol 50:1849–1859. doi:10.1099/00207713-50-5-1849

    Article  CAS  Google Scholar 

  • Doronina NV, Darmaeva TD, Trotsenko YA (2003) Methylophaga alcalica sp. nov., a novel alkaliphilic and moderately halophilic, obligately methylotrophic bacterium from an East Mongolian saline soda lake. Int J Syst Evol Microbiol 53:223–229. doi:10.1099/ijs.0.02267-0

    Article  CAS  Google Scholar 

  • Doronina NV, Poroshina MN, Kaparullina EN, Ezhov VA, Trotsenko YA (2013) Methyloligella halotolerans gen. nov., sp. nov. and Methyloligella solikamskensis sp. nov., two non-pigmented halotolerant obligately methylotrophic bacteria isolated from the Ural saline environments. Syst Appl Microbiol 36:148–154. doi:10.1016/j.syapm.2012.12.001

    Article  CAS  Google Scholar 

  • Dou G, He W, Liu H, Ma Y (2015) Halomonas heilongjiangensis sp. nov., a novel moderately halophilic bacterium isolated from saline and alkaline soil. Antonie Van Leeuwenhoek 108:403–413. doi:10.1007/s10482-015-0493-4

    Article  CAS  Google Scholar 

  • Drienovska I, Chovancova E, Koudelakova T, Damborsky J, Chaloupkova R (2012) Biochemical characterization of a novel haloalkane dehalogenase from a cold-adapted bacterium. Appl Environ Microbiol 78:4995–4998. doi:10.1128/AEM.00485-12

    Article  CAS  Google Scholar 

  • Duarte CM, Holmer M, Olsen Y, Soto D, Marba N, Guiu J, Black K, Karakassis I (2009) Will the oceans help feed humanity? Bioscience 59:967–976. doi:10.1525/bio.2009.59.11.8

    Article  Google Scholar 

  • EFSA (2008) Scientific opinion of the panel on contaminants in the food chain on a request from the European Commission on polycyclic aromatic hydrocarbons in food. EFSA J 724:1–114

    Google Scholar 

  • Eisenberg H (1995) Life in unusual environments: progress in understanding the structure and function of enzymes from extreme halophilic bacteria. Arch Biochem Biophys 318:1–5. doi:10.1006/abbi.1995.1196

    Article  CAS  Google Scholar 

  • Elbanna K, Ibrahim IM, Revol-Junelles A-M (2015) Purification and characterization of halo-alkali-thermophilic protease from Halobacterium sp. strain HP25 isolated from raw salt, Lake Qarun, Fayoum, Egypt. Extremophiles. doi:10.1007/s00792-015-0752-3

    Google Scholar 

  • Eriksson M, Ka J-O, Mohn WW (2001) Effects of low temperature and freeze-thaw cycles on hydrocarbon biodegradation in Arctic tundra soil. Appl Environ Microbiol 67:5107–5112. doi:10.1128/AEM.67.11.5107-5112.2001

    Article  CAS  Google Scholar 

  • Farrington JW, Takada H (2014) Persistent organic pollutants (POPs), polycyclic aromatic hydrocarbons (PAHs), and plastics: examples of the status, trend, and cycling of organic chemicals of environmental concern in the ocean. Oceanography. doi:10.5670/oceanog.2014.23

    Google Scholar 

  • Fathepure BZ (2014) Recent studies in microbial degradation of petroleum hydrocarbons in hypersaline environments. Front Microbiol 5:1–16. doi:10.3389/fmicb.2014.00173

    Article  Google Scholar 

  • Fernandez-Linares L, Acquaviva M, Bertrand J-C, Gauthier M (1996) Effect of sodium chloride concentration on growth and degradation of eicosane by the marine halotolerant bacterium Marinobacter hydrocarbonoclasticus. Syst Appl Microbiol 19:113–121. doi:10.1016/S0723-2020(96)80018-X

    Article  CAS  Google Scholar 

  • Ferreira-Guedes S, Mendes B, Leitão AL (2012) Degradation of 2,4-dichlorophenoxyacetic acid by a halotolerant strain of Penicillium chrysogenum: antibiotic production. Environ Technol 33:677–686. doi:10.1080/09593330.2011.588251

    Article  CAS  Google Scholar 

  • Freedman B (1995) Environmental ecology: the ecological effects of pollution, disturbance, and other stresses. Academic Press, London

    Google Scholar 

  • Frolow F, Harel M, Sussman JL, Mevarech M, Shoham M (1996) Insights into protein adaptation to a saturated salt environment from the crystal structure of a halophilic 2Fe–2S ferredoxin. Nat Struct Biol 3:452–458. doi:10.1038/nsb0596-452

    Article  CAS  Google Scholar 

  • Fulthorpe RR, McGowan C, Maltseva OV, Holben WE, Tiedje JM (1995) 2,4-Dichlorophenoxyacetic acid-degrading bacteria contain mosaics of catabolic genes. Appl Environ Microbiol 61:3274–3281

    CAS  Google Scholar 

  • Galinski E (1995) Osmoadaptation in bacteria. Adv Microb Physiol 37:273

    Article  CAS  Google Scholar 

  • Galinski EA, Trüper HG (1982) Betaine, a compatible solute in the extremely halophilic phototrophic bacterium Ectothiorhodospira halochloris. FEMS Microbiol Lett 13:357–360. doi:10.1016/0378-1097(82)90191-4

    Article  CAS  Google Scholar 

  • Galinski EA, Trüper HG (1994) Microbial behaviour in salt-stressed ecosystems. FEMS Microbiol Rev 15:95–108. doi:10.1111/j.1574-6976.1994.tb00128.x

    Article  CAS  Google Scholar 

  • García MT, Ventosa A, Mellado E (2005) Catabolic versatility of aromatic compound-degrading halophilic bacteria. FEMS Microbiol Ecol 54:97–109. doi:10.1016/j.femsec.2005.03.009

    Article  CAS  Google Scholar 

  • Gargouri B, Mnif S, Aloui F, Karray F, Mhiri N, Chamkha M, Sayadi S (2012) Bioremediation of petroleum contaminated water and soils in tunisia. In: Quercia FF, Vidojevic D (eds) Clean soil and safe water. Springer, Berlin, pp 153–165. doi:10.1007/978-94-007-2240-8_12

  • Gauthier MJ, Lafay B, Christen R, Fernandez L, Acquaviva M, Bonin P, Bertrand JC (1992) Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int J Syst Bacteriol 42:568–576. doi:10.1099/00207713-42-4-568

    Article  CAS  Google Scholar 

  • Ghati A, Paul G (2015) Purification and characterization of a thermo-halophilic, alkali-stable and extremely benzene tolerant esterase from a thermo-halo tolerant Bacillus cereus strain AGP-03, isolated from ‘Bakreshwar’ hot spring. India Process Biochem 50:771–781. doi:10.1016/j.procbio.2015.01.026

    Article  CAS  Google Scholar 

  • Gomes J, Steiner W (2004) The biocatalytic potential of extremophiles and extremozymes. Food Technol Biotechnol 42:223–235

    CAS  Google Scholar 

  • González AJ, Gallego A, Gemini VL, Papalia M, Radice M, Gutkind G, Planes E, Korol SE (2012) Degradation and detoxification of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) by an indigenous Delftia sp. strain in batch and continuous systems. Int Biodeterior Biodegrad 66:8–13. doi:10.1016/j.ibiod.2011.09.010

    Article  CAS  Google Scholar 

  • Govender L, Naidoo L, Setati ME (2009) Isolation of hydrolase producing bacteria from Sua pan solar salterns and the production of endo-1,4-β-xylanase from a newly isolated haloalkaliphilic Nesterenkonia sp. Afr J Biotechnol 8:5458–5466

    CAS  Google Scholar 

  • Gudiña EJ, Pereira JFB, Rodrigues LR, Coutinho JAP, Teixeira JA (2012) Isolation and study of microorganisms from oil samples for application in microbial enhanced oil recovery. Int Biodeterior Biodegrad 68:56–64. doi:10.1016/j.ibiod.2012.01.001

    Article  CAS  Google Scholar 

  • Gunde-Cimerman N, Ramos J, Plemenitaš A (2009) Halotolerant and halophilic fungi. Mycolog Res 113:1231–1241. doi:10.1016/j.mycres.2009.09.002

    Article  CAS  Google Scholar 

  • Guo B, Chen XL, Sun CY, Zhou BC, Zhang YZ (2009) Gene cloning, expression and characterization of a new cold-active and salt-tolerant endo-β-1,4-xylanase from marine Glaciecola mesophila KMM 241. Appl Microbiol Biotechnol 84:1107–1115. doi:10.1007/s00253-009-2056-y

    Article  CAS  Google Scholar 

  • Guo H, Yao J, Cai M, Qian Y, Guo Y, Richnow HH, Blake RE, Doni S, Ceccanti B (2012) Effects of petroleum contamination on soil microbial numbers, metabolic activity and urease activity. Chemosphere 87:1273–1280. doi:10.1016/j.chemosphere.2012.01.034

    Article  CAS  Google Scholar 

  • Hamamura N, Ward DM, Inskeep WP (2013) Effects of petroleum mixture types on soil bacterial population dynamics associated with the biodegradation of hydrocarbons in soil environments. FEMS Microbiol Ecol 85:168–178. doi:10.1111/1574-6941.12108

    Article  Google Scholar 

  • Harayama S, Kishira H, Kasai Y, Shutsubo K (1999) Petroleum biodegradation in marine environments. J Mol Microbiol Biotechnol 1:63–70

    CAS  Google Scholar 

  • Harayama S, Kasai Y, Hara A (2004) Microbial communities in oil-contaminated seawater. Curr Opin Biotechnol 15:205–214. doi:10.1016/j.copbio.2004.04.002

    Article  CAS  Google Scholar 

  • Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169:1–15. doi:10.1016/j.jhazmat.2009.03.137

    Article  CAS  Google Scholar 

  • Harris KL, Banks LD, Mantey JA, Huderson AC, Ramesh A (2013) Bioaccessibility of polycyclic aromatic hydrocarbons: relevance to toxicity and carcinogenesis. Expert Opin Drug Metab Toxicol 9:1465–1480. doi:10.1517/17425255.2013.823157

    Article  CAS  Google Scholar 

  • Head IM, Swannell RPJ (1999) Bioremediation of petroleum hydrocarbon contaminants in marine habitats. Curr Opin Biotechnol 10:234–239. doi:10.1016/S0958-1669(99)80041-X

    Article  CAS  Google Scholar 

  • Head IM, Jones DM, Röling WFM (2006) Marine microorganisms make a meal of oil. Nat Rev Microbiol 4:173–182. doi:10.1038/nrmicro1348

    Article  CAS  Google Scholar 

  • Hedi A, Fardeau M-L, Sadfi N, Boudabous A, Ollivier B, Cayol J-L (2008) Characterization of Halanaerobaculum tunisiense gen. nov., sp. nov., a new halophilic fermentative, strictly anaerobic bacterium isolated from a hypersaline lake in Tunisia. Extremophiles 13:313–319. doi:10.1007/s00792-008-0218-y

    Article  CAS  Google Scholar 

  • Hedi A, Cayol JL, Sadfi N, Fardeau M-L (2014) Marinobacter piscensis sp. nov., a Moderately Halophilic Bacterium Isolated from Salty Food in Tunisia. Curr Microbiol 70:544–549. doi:10.1007/s00284-014-0754-x

    Article  CAS  Google Scholar 

  • Hinteregger C, Streichsbier F (1997) Halomonas sp., a moderately halophilic strain, for biotreatment of saline phenolic waste-water. Biotechnol Lett 19:1099–1102. doi:10.1023/a:1018488410102

    Article  CAS  Google Scholar 

  • Hof T (1935) Investigations concerning bacterial life in strong brines. Rev Trav Bot Neerl 32:92–173

  • Huang J, Qiao ZX, Tang JW, Wang G (2015a) High quality draft genome sequence of the moderately halophilic bacterium Pontibacillus yanchengensis Y32T and comparison among Pontibacillus genomes. Stand Genomic Sci 10:1–9. doi:10.1186/s40793-015-0085-y

    Article  Google Scholar 

  • Huang X, Lin J, Ye X, Wang G (2015b) Molecular characterization of a thermophilic and salt-and alkaline-tolerant xylanase from Planococcus sp. SL4, a strain isolated from the sediment of a Soda Lake. J Microbiol Biotechnol 25:662–671. doi:10.4014/jmb.1408.08062

    Article  CAS  Google Scholar 

  • Huu NB, Denner EBM, Ha DTC, Wanner G, Stan-Lotter H (1999) Marinobacter aquaeolei sp. nov., a halophilic bacterium isolated from a Vietnamese oil-producing well. Int J Syst Bacteriol 49:367–375. doi:10.1099/00207713-49-2-367

    Article  CAS  Google Scholar 

  • Huyop FZ, Derek E, Cowell D (2000) The impact of saline sewage in biological treatment of waste water in sewage treatment process through the use of respirometry. Buletin Kimia 12:111–119

    Google Scholar 

  • Ichor T, Okerentugba PO, Okpokwasili GC (2014) Biodegradation of total petroleum hydrocarbon by aerobic heterotrophic bacteria isolated from crude oil contaminated brackish waters of bodo creek. J Bioremed Biodegred 5:1. doi:10.4172/2155-6199.1000236

    Google Scholar 

  • IPCC (2005) Intergovernmental panel on climate change, special report on safeguarding the ozone layer and the global climate system: issues related to hydrofluorocarbons and perfluorocarbons. Intergovernmental Panel on Climate Change

  • Ishikawa M, Tanasupawat S, Nakajima K, Kanamori H, Ishizaki S, Kodama K, Okamoto-Kainuma A, Koizumi Y, Yamamoto Y, Yamasato K (2009) Alkalibacterium thalassium sp. nov., Alkalibacterium pelagium sp. nov., Alkalibacterium putridalgicola sp. nov. and Alkalibacterium kapii sp. nov., slightly halophilic and alkaliphilic marine lactic acid bacteria isolated from marine organisms and salted foods collected in Japan and Thailand. Int J Syst Evol Microbiol 59:1215–1226. doi:10.1099/ijs.0.65602-0

    Article  CAS  Google Scholar 

  • Ishikawa M, Yamasato K, Kodama K, Yasuda H, Matsuyama M, Okamoto-Kainuma A, Koizumi Y (2013) Alkalibacterium gilvum sp. nov., slightly halophilic and alkaliphilic lactic acid bacterium isolated from soft and semi-hard cheeses. Int J Syst Evol Microbiol 63:1471–1478. doi:10.1099/ijs.0.042556-0

    Article  CAS  Google Scholar 

  • Jehlička J, Oren A, Vítek P (2012) Use of Raman spectroscopy for identification of compatible solutes in halophilic bacteria. Extremophiles 16:507–514. doi:10.1007/s00792-012-0450-3

    Article  CAS  Google Scholar 

  • Jiang J, Pan Y, Meng L, Hu S, Zhang X, Hu B, Meng J, Li C, Huang H, Wang K, Su T (2013) Halomonas zhaodongensis sp. nov., a slightly halophilic bacterium isolated from saline–alkaline soils in Zhaodong. China Antonie Van Leeuwenhoek 104:685–694. doi:10.1007/s10482-013-9976-3

    Article  CAS  Google Scholar 

  • Joghee NN, Jayaraman G (2016) Biochemical changes induced by salt stress in halotolerant bacterial isolates are media dependent as well as species specific. Prep Biochem Biotechnol 46:8–14. doi:10.1080/10826068.2014.970689

    Article  CAS  Google Scholar 

  • José León M, Martínez-Checa F, Ventosa A, Sánchez-Porro C (2015) Idiomarina aquatica sp. nov., a moderately halophilic bacterium isolated from salterns. Int J Syst Evol Microbiol 65:4595–4600. doi:10.1099/ijsem.0.000619

    Article  CAS  Google Scholar 

  • Joseph TC, Baby A, Reghunathan D, Varghese AM, Murugadas V, Lalitha KV (2014) Draft genome sequence of the halophilic and highly halotolerant Gammaproteobacteria strain MFB021. Genome Announc 2:e01114–e01156. doi:10.1128/genomeA.01156-14

    Google Scholar 

  • Kang H, Kim J-H, Jeon CO, Yoon J-H, Kim W (2015) Roseovarius aquimarinus sp. nov., a slightly halophilic bacterium isolated from seawater. Int J Syst Evol Microbiol 65:4514–4520. doi:10.1099/ijsem.0.000604

    Article  CAS  Google Scholar 

  • Karan R, Capes MD, DasSarma S (2012) Function and biotechnology of extremophilic enzymes in low water activity Aquat Biosyst 8:1. doi:10.1186/2046-9063-8-4

    Google Scholar 

  • Kästner M, Breuer-Jammali M, Mahro B (1998) Impact of inoculation protocols, salinity, and pH on the degradation of polycyclic aromatic hydrocarbons (PAHs) and survival of PAH-degrading bacteria introduced into soil. Appl Environ Microbiol 64:359–362

    Google Scholar 

  • Katayama T, Yoshioka H, Mochimaru H, Meng X-Y, Muramoto Y, Usami J, Ikeda H, Kamagata Y, Sakata S (2014) Methanohalophilus levihalophilus sp. nov., a slightly halophilic, methylotrophic methanogen isolated from natural gas-bearing deep aquifers, and emended description of the genus Methanohalophilus. Int J Syst Evol Microbiol 64:2089–2093. doi:10.1099/ijs.0.063677-0

    Article  CAS  Google Scholar 

  • Kim D, Kim SW, Choi KY, Lee JS, Kim E (2008) Molecular cloning and functional characterization of the genes encoding benzoate and p-hydroxybenzoate degradation by the halophilic Chromohalobacter sp. strain HS-2. FEMS Microbiol Lett 280:235–241. doi:10.1111/j.1574-6968.2008.01067.x

    Article  CAS  Google Scholar 

  • Kim S-J, Lee J-C, Han S-I, Whang K-S (2015) Halobacillus sediminis sp. nov., a moderately halophilic bacterium isolated from a solar saltern sediment. Int J Syst Evol Microbiol 65:4434–4440. doi:10.1099/ijsem.0.000595

    Article  CAS  Google Scholar 

  • Kim S-J, Lee J-C, Han S-I, Whang K-S (2016) Halobacillus salicampi sp. nov., a moderately halophilic bacterium isolated from a solar saltern sediment. Antonie Van Leeuwenhoek 109:713–720. doi:10.1007/s10482-016-0672-y

    Article  CAS  Google Scholar 

  • Kiran KK, Koteswaraiah P, Chandra TS (2012) Production of halophilic α-amylase by immobilized cells of moderately halophilic Bacillus sp. Strain TSCVKK Br Microbiol Res J 2:146–157. doi:10.9734/BMRJ/2012/1484

    Article  CAS  Google Scholar 

  • Kixmuller D, Greie JC (2012) An ATP-driven potassium pump promotes long-term survival of Halobacterium salinarum within salt crystals. Environ Microbiol Rep 4:234–241. doi:10.1111/j.1758-2229.2012.00326.x

    Article  CAS  Google Scholar 

  • Kleinsteuber S, Riis V, Fetzer I, Harms H, Müller S (2006) Population dynamics within a microbial consortium during growth on diesel fuel in saline environments. Appl Environ Microbiol 72:3531–3542. doi:10.1128/AEM.72.5.3531-3542.2006

    Article  CAS  Google Scholar 

  • Knafla A, Phillipps KA, Brecher RW, Petrovic S, Richardson M (2006) Development of a dermal cancer slope factor for benzo [a] pyrene. Regul Toxicol Pharmacol 45:159–168. doi:10.1016/j.yrtph.2006.02.008

    Article  CAS  Google Scholar 

  • Kuhlmann AU, Bremer E (2002) Osmotically regulated synthesis of the compatible solute ectoine in Bacillus pasteurii and related Bacillus spp. Appl Environ Microbiol 68:772–783. doi:10.1128/AEM.68.2.772-783.2002

    Article  CAS  Google Scholar 

  • Kulichevskaya IS, Milekhina EI, Borzenkov IA, Zvyagintseva IS, Belyaev SS (1991) Oxidation of petroleum-hydrocarbons by extremely halophilic archaebacteria. Microbiology 60:596–601

    Google Scholar 

  • Kumar M, León V, Materano ADS, Ilzins OA (2007) A halotolerant and thermotolerant Bacillus sp. degrades hydrocarbons and produces tensio-active emulsifying agent. World J Microbiol Biotechnol 23:211–220. doi:10.1007/s11274-006-9215-4

    Article  CAS  Google Scholar 

  • Kumar A, Trefault N, Olaniran AO (2014) Microbial degradation of 2,4-dichlorophenoxyacetic acid: insight into the enzymes and catabolic genes involved, their regulation and biotechnological implications. Crit Rev Microbiol. doi:10.3109/1040841X.2014.917068

    Google Scholar 

  • Kumar RM, Kaur G, Kumar N, Kumar A, Singh NK, Bala M, Kaur N, Mayilraj S (2015) Taxonomic description and genome sequence of Salinicoccus sediminis sp. nov., a halotolerant bacterium isolated from marine sediment. Int J Syst Evol Microbiol 65:3794–3799. doi:10.1099/ijsem.0.000495

    Article  CAS  Google Scholar 

  • Kushner D, Kamekura M (1988) Physiology of halophilic eubacteria. Halophilic Bact 1:87–103

    Google Scholar 

  • Kuznetsov VD, Zaitseva TA, Vakulenko LV, Filippova SN (1992) Streptomyces albiaxialis sp. nov.—a new oil hydrocarbon degrading species of thermo-and halotolerant Streptomyces. Mikrobiologiya 61:84–91

    CAS  Google Scholar 

  • Lal B, Khanna S (1996) Degradation of crude oil by Acinetobacter calcoaceticus and Alcaligenes odorans. J Appl Bacteriol 81:355–362. doi:10.1111/j.1365-2672.1996.tb03519.x

    CAS  Google Scholar 

  • Lanyi JK (1990) Halorhodopsin, a light-driven electrogenic chloride-transport system. Physiol Rev 70:319–330. doi:10.1111/j.1749-6632.1989.tb25128.x

    CAS  Google Scholar 

  • Lay WCL, Liu Y, Fane AG (2010) Impacts of salinity on the performance of high retention membrane bioreactors for water reclamation: a review. Water Res 44:21–40. doi:10.1016/j.watres.2009.09.026

    Article  CAS  Google Scholar 

  • Le Borgne S, Paniagua D, Vazquez-Duhalt R (2008) Biodegradation of organic pollutants by halophilic bacteria and archaea. J Mol Microbiol Biotechnol 15:74–92. doi:10.1159/000121323

    Article  CAS  Google Scholar 

  • Leahy JG, Colwell RR (1990) Microbial degradation of hydrocarbons in the environment. Microbiol Rev 54:305–315

    CAS  Google Scholar 

  • Lee J-C, Kim Y-S, Yun B-S, Whang K-S (2015a) Halomonas salicampi sp. nov., a halotolerant and alkalitolerant bacterium isolated from a saltern soil. Int J Syst Evol Microbiol 65:4792–4799. doi:10.1099/ijsem.0.000650

    Article  CAS  Google Scholar 

  • Lee J-C, Kim Y-S, Yun B-S, Whang K-S (2015b) Pontibacillus salicampi sp. nov., a moderately halophilic bacterium isolated from saltern soil. Int J Syst Evol Microbiol 65:375–380. doi:10.1099/ijs.0.066423-0

    Article  CAS  Google Scholar 

  • León MJ, Fernández AB, Ghai R, Sánchez-Porro C, Rodriguez-Valera F, Ventosa A (2014) From metagenomics to pure culture: isolation and characterization of the moderately halophilic bacterium Spiribacter salinus gen. nov., sp. nov. Appl Environ Microbiol 80:3850–3857. doi:10.1128/AEM.00430-14

    Article  CAS  Google Scholar 

  • Lewis C, Pook C, Galloway T (2008) Reproductive toxicity of the water accommodated fraction (WAF) of crude oil in the polychaetes Arenicola marina (L.) and Nereis virens (Sars). Aquat Toxicol 90:73–81. doi:10.1016/j.aquatox.2008.08.001

    Article  CAS  Google Scholar 

  • Li J, Jin Z, Yu B (2010) Isolation and characterization of aniline degradation slightly halophilic bacterium, Erwinia sp. Strain HSA 6. Microbiol Res 165:418–426. doi:10.1016/j.micres.2009.09.003

    Article  CAS  Google Scholar 

  • Liu C, Shao Z (2005) Alcanivorax dieselolei sp. nov., a novel alkane-degrading bacterium isolated from sea water and deep-sea sediment. Int J Syst Evol Microbiol 55:1181–1186. doi:10.1099/ijs.0.63443-0

    Article  CAS  Google Scholar 

  • Liu H, Xiao L, Wei J, Schmitz JC, Liu M, Wang C, Cheng L, Wu N, Chen L, Zhang Y, Lin X (2013) Identification of Streptomyces sp. nov. WH26 producing cytotoxic compounds isolated from marine solar saltern in China. World J Microbiol Biotechnol 29:1271–1278. doi:10.1007/s11274-013-1290-8

    Article  CAS  Google Scholar 

  • Liu B, Ju M, Liu J, Wu W, Li X (2016) Isolation, identification, and crude oil degradation characteristics of a high-temperature, hydrocarbon-degrading strain. Mar Pollut Bull. doi:10.1016/j.marpolbul.2015.09.053

    Google Scholar 

  • Loughlin TR (2013) Marine mammals and the Exxon Valdez. Academic Press, London

    Google Scholar 

  • Luo Y-J, Xie B-S, Lv X-L, Cai M, Wang Y-N, Cui H-L, Cai H, Wu X-L (2015) Marinobacter shengliensis sp. nov., a moderately halophilic bacterium isolated from oil-contaminated saline soil. Antonie Van Leeuwenhoek 107:1085–1094. doi:10.1007/s10482-015-0401-y

    Article  CAS  Google Scholar 

  • Luque R, Béjar V, Quesada E, Llamas I (2014) Diversity of halophilic bacteria isolated from Rambla Salada, Murcia (Spain). Can J Microbiol 60:839–846. doi:10.1139/cjm-2014-0342

    Article  CAS  Google Scholar 

  • Mackay D, Afghan BK (2012) Hydrocarbons and halogenated hydrocarbons in the aquatic environment, vol 16. Springer, Berlin

    Google Scholar 

  • Madern D, Ebel C, Zaccai G (2000) Halophilic adaptation of enzymes. Extremophiles 4:91–98

    Article  CAS  Google Scholar 

  • Madigan MT, Orent A (1999) Thermophilic and halophilic extremophiles. Curr Opin Microbiol 2:265–269. doi:10.1016/S1369-5274(99)80046-0

    Article  CAS  Google Scholar 

  • Malins DC (2013) Biological effects, vol 2. Elsevier, Amsterdam

    Google Scholar 

  • Maltseva O, Oriel P (1997) Monitoring of an alkaline 2,4,6-trichlorophenol-degrading enrichment culture by DNA fingerprinting methods and isolation of the responsible organism, Haloalkaliphilic Nocardioides sp. strain M6. Appl Environ Microbiol 63:4145–4149

    CAS  Google Scholar 

  • Maltseva O, McGowan C, Fulthorpe R, Oriel P (1996) Degradation of 2,4-dichlorophenoxyacetic acid by haloalkaliphilic bacteria. Microbiology 142:1115–1122. doi:10.1099/13500872-142-5-1115

    Article  CAS  Google Scholar 

  • Mandal AK, Sarma PM, Dwivedi M, Swaleh A, Lal B, Agnihotri A, Hazra US, Doraiah A, Patidar SS (2007) Bioremediation of oil contaminated soil at South Santhal CTF, Mehsana, India: a case study. In: Asia Pacific Oil and Gas Conference and Exhibition. Society of Petroleum Engineers. doi:10.2118/109571-MS

  • Margesin R, Schinner F (2001) Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl Microbiol Biotechnol 56:650–663. doi:10.1007/s002530100701

    Article  CAS  Google Scholar 

  • Márquez MC, Carrasco IJ, Xue Y, Ma Y, Cowan DA, Jones BE, Grant WD, Ventosa A (2007) Aquisalimonas asiatica gen. nov., sp. nov., a moderately halophilic bacterium isolated from an alkaline, saline lake in Inner Mongolia. China Int J Syst Evol Microbiol 57:1137–1142. doi:10.1099/ijs.0.64916-0

    Article  CAS  Google Scholar 

  • Martin DD, Ciulla RA, Roberts MF (1999) Osmoadaptation in archaea. Appl Environ Microbiol 65:1815–1825

    CAS  Google Scholar 

  • Martins LF, Peixoto RS (2012) Biodegradation of petroleum hydrocarbons in hypersaline environments. Braz J Microbiol 43:865–872. doi:10.1590/S1517-83822012000300003

    Article  CAS  Google Scholar 

  • Mavromatis K, Ivanova N, Anderson I, Lykidis A, Hooper SD, Sun H, Kunin V, Lapidus A, Hugenholtz P, Patel B (2009) Genome analysis of the anaerobic thermohalophilic bacterium Halothermothrix orenii. PloS One 4:e4192. doi:10.1371/journal.pone.0004192

    Article  CAS  Google Scholar 

  • McGenity TJ (2010) Halophilic hydrocarbon degraders. In: Timmis K (ed) Handbook of hydrocarbon and lipid microbiology. Springer, London, pp 1939–1951

  • Mehrshad M, Amoozegar MA, Makhdoumi A, Rasooli M, Asadi B, Schumann P, Ventosa A (2015a) Halovarius luteus gen. nov., sp. nov., a novel extremely halophilic archaeon from Urmia salt lake. Iran Int J Syst Evol Microbiol 65:2420–2425. doi:10.1099/ijs.0.000279

    Article  CAS  Google Scholar 

  • Mehrshad M, Amoozegar MA, Makhdoumi A, Rasooli M, Asadi B, Schumann P, Ventosa A (2015b) Halovarius luteus gen. nov., sp. nov., an extremely halophilic archaeon from a salt lake. Int J Syst Evol Microbiol 65:2420–2425. doi:10.1099/ijs.0.000279

    Article  CAS  Google Scholar 

  • Mehrshad M, Amoozegar MA, Makhdoumi A, Fazeli SAS, Farahani H, Asadi B, Schumann P, Ventosa A (2016) Halosiccatus urmianus gen. nov., sp. nov., a haloarchaeon from a salt lake. Int J Syst Evol Microbiol 66:725–730. doi:10.1099/ijsem.0.000781

    Article  Google Scholar 

  • Mesbah NM, Wiegel J (2014a) Halophilic alkali-and thermostable amylase from a novel polyextremophilic Amphibacillus sp. NM-Ra2. Int J Biol Macromol 70:222–229. doi:10.1016/j.ijbiomac.2014.06.053

    Article  CAS  Google Scholar 

  • Mesbah NM, Wiegel J (2014b) Purification and biochemical characterization of halophilic, alkalithermophilic protease AbCP from Alkalibacillus sp. NM-Fa4. J Mol Catal B Enzym 105:74–81. doi:10.1016/j.molcatb.2014.03.023

    Article  CAS  Google Scholar 

  • Meuser JE, Baxter BK, Spear JR, Peters JW, Posewitz MC, Boyd ES (2013) Contrasting patterns of community assembly in the stratified water column of Great Salt Lake. Utah Microbial Ecol 66:268–280. doi:10.1007/s00248-013-0180-9

    Article  CAS  Google Scholar 

  • Mevarech M, Frolow F, Gloss LM (2000) Halophilic enzymes: proteins with a grain of salt. Biophys Chem 86:155–164. doi:10.1016/S0301-4622(00)00126-5

    Article  CAS  Google Scholar 

  • Mijts BN, Patel BKC (2002) Cloning, sequencing and expression of an alpha-amylase gene, amyA, from the thermophilic halophile Halothermothrix orenii and purification and biochemical characterization of the recombinant enzyme. Microbiology-Sgm 148:2343–2349. doi:10.1099/00221287-148-8-2343

    Article  CAS  Google Scholar 

  • Minai-Tehrani D, Herfatmanesh A, Azari-Dehkordi F, Minuoi S (2006) Effect of salinity on biodegradation of aliphatic fractions of crude oil in soil. Pak J Biol Sci 9:1531–1535. doi:10.3923/pjbs.2006.1531.1535

    Article  CAS  Google Scholar 

  • Minai-Tehrani D, Minoui S, Herfatmanesh A (2009) Effect of salinity on biodegradation of polycyclic aromatic hydrocarbons (PAHs) of heavy crude oil in soil. Bull Environ Contam Toxicol 82:179–184. doi:10.1007/s00128-008-9548-9

    Article  CAS  Google Scholar 

  • Mnif S, Chamkha M, Sayadi S (2009) Isolation and characterization of Halomonas sp. strain C2SS100, a hydrocarbon-degrading bacterium under hypersaline conditions. J Appl Microbiol 107:785–794. doi:10.1111/j.1365-2672.2009.04251.x

    Article  CAS  Google Scholar 

  • Mohn WW, Stewart GR (2000) Limiting factors for hydrocarbon biodegradation at low temperature in Arctic soils. Soil Biol Biochem 32:1161–1172. doi:10.1016/S0038-0717(00)00032-8

    Article  CAS  Google Scholar 

  • Molina MJ, Rowland FS (1974) Stratospheric sink for chlorofluoromethanes-Chlorine atom catalyzed destruction of ozone. In: International conference on the environmental impact of aerospace operations in the high atmosphere, 2nd edn. San Diego, CA, pp 99–104

  • Mongodin EF, Nelson KE, Daugherty S, Deboy RT, Wister J, Khouri H, Weidman J, Walsh DA, Papke RT, Sanchez Perez G, Sharma AK, Nesbø CL, MacLeod D, Bapteste E, Doolittle WF, Charlebois RL, Legault B, Rodriguez-Valera F (2005) The genome of Salinibacter ruber: convergence and gene exchange among hyperhalophilic bacteria and archaea. Proc Natl Acad Sci USA 102:18147–18152. doi:10.1073/pnas.0509073102

    Article  CAS  Google Scholar 

  • Montero-Calasanz dMC, Göker M, Pötter G, Rohde M, Spröer C, Schumann P, Gorbushina AA, Klenk H-P (2013) Geodermatophilus africanus sp. nov., a halotolerant actinomycete isolated from Saharan desert sand. Antonie Van Leeuwenhoek 104:207–216. doi:10.1007/s10482-013-9939-8

    Article  CAS  Google Scholar 

  • Moreno MdL, Sánchez-Porro C, Piubeli F, Frias L, GarcÌa MT, Mellado E (2011) Cloning, characterization and analysis of cat and ben genes from the phenol degrading halophilic bacterium Halomonas organivorans. PloS One 6:e21049. doi:10.1371/journal.pone.0021049

    Article  CAS  Google Scholar 

  • Moreno ML, Piubeli F, Bonfa MRL, García MT, Durrant LR, Mellado E (2012) Analysis and characterization of cultivable extremophilic hydrolytic bacterial community in heavy-metal-contaminated soils from the Atacama Desert and their biotechnological potentials. J Appl Microbiol 113:550–559. doi:10.1111/j.1365-2672.2012.05366.x

    Article  CAS  Google Scholar 

  • Morishita H (1978a) Control by episome on salt-resistance in bacteria. In: Origin of life, pp 431–439

  • Morishita H (1978b) Genetic regulation on salt resistance in halophilic bacteria. In: Energetics and structure of halophilic microorganisms. Elsevier/North-Holland Biomedical Press, Amsterdam, The Netherlands, pp 599–606

  • Mutlu MB, GÜVen K (2015) Bacterial diversity in Çamaltı Saltern, Turkey. Polish J Microbiol 64:37–45

    Google Scholar 

  • Ng WV, Kennedy SP, Mahairas GG, Berquist B, Pan M, Shukla HD, Lasky SR, Baliga NS, Thorsson V, Sbrogna J (2000) Genome sequence of Halobacterium species NRC-1. Proc Natl Acad Sci 97:12176–12181. doi:10.1073/pnas.190337797

    Article  CAS  Google Scholar 

  • Novak HR, Sayer C, Panning J, Littlechild JA (2013) Characterisation of an L-haloacid dehalogenase from the marine psychrophile Psychromonas ingrahamii with potential industrial application. Mar Biotechnol 15:695–705. doi:10.1007/s10126-013-9522-3

    Article  CAS  Google Scholar 

  • Novak HR, Sayer C, Isupov MN, Gotz D, Spragg AM, Littlechild JA (2014) Biochemical and structural characterisation of a haloalkane dehalogenase from a marine Rhodobacteraceae. FEBS Lett 588:1616–1622. doi:10.1016/j.febslet.2014.02.056

    Article  CAS  Google Scholar 

  • Nyyssölä A, Kerovuo J, Kaukinen P, von Weymarn N, Reinikainen T (2000) Extreme halophiles synthesize betaine from glycine by methylation. J Biol Chem 275:22196–22201. doi:10.1074/jbc.M910111199

    Article  Google Scholar 

  • Obuekwe CO, Badrudeen AM, Al-Saleh E, Mulder JL (2005) Growth and hydrocarbon degradation by three desert fungi under conditions of simultaneous temperature and salt stress. Int Biodeterior Biodegradation 56:197–205. doi:10.1016/j.ibiod.2005.05.005

    Article  CAS  Google Scholar 

  • Oesterhelt D, Patzelt H, Kesler B (1998) Decomposition of halogenated hydrocarbons by halophilic bacteria. Patent DE196398949

  • Oh YJ, Lee H-W, Lim SK, Kwon M-S, Lee J, Jang J-Y, Lee JH, Park HW, Nam Y-D, Seo M-J, Roh SW, Choi H-J (2016) Lentibacillus kimchii sp. nov., an extremely halophilic bacterium isolated from kimchi, a Korean fermented vegetable. Antonie Van Leeuwenhoek. doi:10.1007/s10482-016-0686-5

    Google Scholar 

  • Oie CSI, Albaugh CE, Peyton BM (2007) Benzoate and salicylate degradation by Halomonas campisalis, an alkaliphilic and moderately halophilic microorganism. Water Res 41:1235–1242. doi:10.1016/j.watres.2006.12.029

    Article  CAS  Google Scholar 

  • Okerentugba PO, Ezeronye OU (2004) Petroleum degrading potentials of single and mixed microbial cultures isolated from rivers and refinery effluent in Nigeria. Afr J Biotechnol 2:288–292

    Google Scholar 

  • Okpokwasili GC, James WA (1995) Microbial contamination of kerosene, gasoline and crude oil and their biodeterioration potentials. Mater Organ 29:147–156

    Google Scholar 

  • Olivier L (2004) Application des micro-organismes halophiles au traitement des effluents industriels hypersalins. Ph.D. thesis, Ecole Nationale Supérieure Agronomique de Montpellier

  • Ollivier B, Caumette P, Garcia J-L, Mah RA (1994) Anaerobic bacteria from hypersaline environments. Microbiol Rev 58:27–38

    CAS  Google Scholar 

  • Oren A (1983) Population dynamics of halobacteria in the Dead Sea water column. Limnol Oceanogr 28:1094–1103. doi:10.4319/lo.1983.28.6.1094

    Article  Google Scholar 

  • Oren A (2002a) Cellular origin, life in extreme habitats and astrobiology. Halophilic Microorgan Environ 5:575

    Google Scholar 

  • Oren A (2002b) Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechnol 28:56–63. doi:10.1038/sj/jim/7000176

    Article  CAS  Google Scholar 

  • Oren A (2002c) Molecular ecology of extremely halophilic Archaea and Bacteria. FEMS Microbiol Ecol 39:1–7. doi:10.1111/j.1574-6941.2002.tb00900.x

    Article  CAS  Google Scholar 

  • Oren A (2002d) Taxonomy of halophilic microorganisms: archaea, bacteria, and eucarya. In: Halophilic microorganisms and their environments. Springer, Netherlands, pp 23–68. doi:10.1007/0-306-48053-0_3

  • Oren A (2006) Life at high salt concentrations. In: The prokaryotes. Springer, Berlin, pp 263–282

  • Oren A (2008) Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Syst 4:1–13. doi:10.1186/1746-1448-4-2

    Article  CAS  Google Scholar 

  • Oren A (2014) Taxonomy of halophilic Archaea: current status and future challenges. Extremophiles 18:825–834. doi:10.1007/s00792-014-0654-9

    Article  Google Scholar 

  • Oren A (2015) Halophilic microbial communities and their environments. Curr Opin Biotechnol 33:119–124. doi:10.1016/j.copbio.2015.02.005

    Article  CAS  Google Scholar 

  • Oren A, Gurevich P (1995) Dynamics of a bloom of halophilic archaea in the Dead Sea. Hydrobiologia 315:149–158. doi:10.1007/BF00033627

    Article  Google Scholar 

  • Oren A, Litchfield CD (1998) Early salt production at the Dead Sea and the Mediterranean coast of the Holy Land. J Salt Hist 6:7–18

    Google Scholar 

  • Oren A, Gurevich P, Azachi M, Henis Y (1992) Microbial degradation of pollutants at high salt concentrations. Biodegradation 3:387–398. doi:10.1007/BF00129095

    Article  CAS  Google Scholar 

  • Oren A, Heldal M, Norland S, Galinski EA (2002) Intracellular ion and organic solute concentrations of the extremely halophilic bacterium Salinibacter ruber. Extremophiles 6:491–498. doi:10.1007/s00792-002-0286-3

    Article  CAS  Google Scholar 

  • Oriel P, Chauhan S, Maltseva O, Fu W (1997) Degradation of aromatics and haloaromatics by halophilic bacteria. In: Microbial diversity and genetics of biodegradation. Japan Scientific Societies Press, Tokyo/Karger, Basel, pp 123–130

  • Ortega-Calvo J-J, Gschwend PM (2010) Influence of low oxygen tensions and sorption to sediment black carbon on biodegradation of pyrene. Appl Environ Microbiol 76:4430–4437. doi:10.1128/AEM.00461-10

    Article  CAS  Google Scholar 

  • Pal KK, Dey R, Thomas M, Sherathia D, Dalsania T, Patel I, Savsani K, Ghorai S, Vanpariya S, Sukhadiya B (2013) Draft genome sequence of the extremely halophilic Bacillus sp. strain SB49, isolated from a salt crystallizer pond of the Little Rann of Kutch, India. Genome Announc 1:e00813–e00869. doi:10.1128/genomeA.00869-13

    Google Scholar 

  • Patzelt H (2005) Hydrocarbon degradation under hypersaline conditions. In: Adaptation to life at high salt concentrations in archaea, bacteria, and eukarya. Springer, Berlin, pp 105–122

  • Perez-Pomares F, Bautista V, Ferrer J, Pire C, Marhuenda-Egea FC, Bonete MJ (2003) alpha-amylase activity from the halophilic archaeon Haloferax mediterranei. Extremophiles 7:299–306. doi:10.1007/s00792-003-0327-6

    Article  CAS  Google Scholar 

  • Petter HFM (1932) Over roode en andere bacterien van gezouten visch

  • Pierce GJ (1914) The behavior of certain microorganisms in brine. Carnegie Inst Washington Publ 193:49–69

    Google Scholar 

  • Piñar G, Kraková L, Pangallo D, Piombino-Mascali D, Maixner F, Zink A, Sterflinger K (2014) Halophilic bacteria are colonizing the exhibition areas of the Capuchin Catacombs in Palermo, Italy. Extremophiles 18:677–691. doi:10.1007/s00792-014-0649-6

    Article  CAS  Google Scholar 

  • Piubeli F, Lourdes Moreno M, Kishi LT, Henrique-Silva F, García MT, Mellado E (2015) Phylogenetic profiling and diversity of bacterial communities in the Death Valley, an extreme habitat in the Atacama Desert. Indian J Microbiol 55:392–399. doi:10.1007/s12088-015-0539-3

    Article  Google Scholar 

  • Plotnikova EG, Altyntseva OV, Kosheleva IA, Puntus IF, Filonov AE, Gavrish EY, Demakov VA, Boronin AM (2001) Bacterial degraders of polycyclic aromatic hydrocarbons isolated from salt-contaminated soils and bottom sediments in salt mining areas. Microbiology 70:51–58. doi:10.1023/A:1004892804670

    Article  CAS  Google Scholar 

  • Plotnikova EG, Yastrebova OV, Anan’ina LN, Dorofeeva LV, Lysanskaya VY, Demakov VA (2011) Halotolerant bacteria of the genus Arthrobacter degrading polycyclic aromatic hydrocarbons. Russian J Ecol 42:502–509. doi:10.1134/S1067413611060130

    Article  CAS  Google Scholar 

  • Poosarla VG, Chandra TS (2014) Purification and characterization of novel halo-acid-alkali-thermo-stable xylanase from Gracilibacillus sp. TSCPVG Appl Biochem Biotechnol 173:1375–1390. doi:10.1007/s12010-014-0939-6

    Article  CAS  Google Scholar 

  • Prakash S, Veeranagouda Y, Kyoung L, Sreeramulu K (2009) Xylanase production using inexpensive agricultural wastes and its partial characterization from a halophilic Chromohalobacter sp. TPSV 101. World J Microbiol Biotechnol 25:197–204. doi:10.1007/s11274-008-9880-6

    Article  CAS  Google Scholar 

  • Qin X, Tang JC, Li DS, Zhang QM (2012) Effect of salinity on the bioremediation of petroleum hydrocarbons in a saline-alkaline soil. Lett Appl Microbiol 55:210–217. doi:10.1111/j.1472-765X.2012.03280.x

    Article  CAS  Google Scholar 

  • Quadri I, Hassani II, l’Haridon S, Chalopin M, Hacène H, Jebbar M (2016) Characterization and antimicrobial potential of extremely halophilic archaea isolated from hypersaline environments of the Algerian Sahara. Microbiol Res 186–187:119–131. doi:10.1016/j.micres.2016.04.003

    Article  CAS  Google Scholar 

  • Rezgui R, Maaroufi A, Fardeau M-L, Ben Ali Gam Z, Cayol J-L, Ben Hamed S, Labat M (2012) Anaerosalibacter bizertensis gen. nov., sp. nov., a halotolerant bacterium isolated from sludge. Int J Syst Evol Microbiol 62:2469–2474. doi:10.1099/ijs.0.036566-0

    Article  CAS  Google Scholar 

  • Rhykerd RL, Weaver RW, McInnes KJ (1995) Influence of salinity on bioremediation of oil in soil. Environ Pollut 90:127–130. doi:10.1016/0269-7491(94)00087-T

    Article  CAS  Google Scholar 

  • Rice SD, Short JW, Carls MG, Moles A, Spies RB (2007) The Exxon Valdez oil spill. In: Long-term ecological change in the Northern Gulf of Alaska. Elsevier, Amsterdam, pp 419–520

  • Riis V, Kleinsteuber S, Babel W (2003) Influence of high salinities on the degradation of diesel fuel by bacterial consortia. Can J Microbiol 49:713–721. doi:10.1139/w03-083

    Article  CAS  Google Scholar 

  • Roberts MF (2005) Organic compatible solutes of halotolerant and halophilic microorganisms. Saline Syst 1:1–30. doi:10.1186/1746-1448-1-5

    Article  CAS  Google Scholar 

  • Roberts M, Lai M, Gunsalus R (1992) Biosynthetic pathways of the osmolytes N epsilon-acetyl-beta-lysine, beta-glutamine, and betaine in Methanohalophilus strain FDF1 suggested by nuclear magnetic resonance analyses. J Bacteriol 174:6688–6693

    CAS  Google Scholar 

  • Roohi A, Ahmed I, Paek J, Sin Y, Abbas S, Jamil M, Chang YH (2014) Bacillus pakistanensis sp. nov., a halotolerant bacterium isolated from salt mines of the Karak Area in Pakistan. Antonie Van Leeuwenhoek 105:1163–1172. doi:10.1007/s10482-014-0177-5

    Article  CAS  Google Scholar 

  • Rowland FS (1976) Chlorocarbon compounds and stratospheric ozone. J Photochem 5:180

    Article  Google Scholar 

  • Rye CA, Isupov MN, Lebedev AA, Littlechild JA (2009) Biochemical and structural studies of a L-haloacid dehalogenase from the thermophilic archaeon Sulfolobus tokodaii. Extremophiles 13:179–190. doi:10.1007/s00792-008-0208-0

    Article  CAS  Google Scholar 

  • Saiz-Jimenez C, Laiz L (2000) Occurrence of halotolerant/halophilic bacterial communities in deteriorated monuments. Int Biodeterior Biodegrad 46:319–326. doi:10.1016/S0964-8305(00)00104-9

    Article  CAS  Google Scholar 

  • Samir R, Essam T, Ragab Y, Hashem A (2015) Enhanced photocatalytic–biological degradation of 2,4 dichlorophenoxyacetic acid. Bull Fac Pharm 53:77–82. doi:10.1016/j.bfopcu.2015.03.002

    Google Scholar 

  • Sanchez-Porro C, Mellado E, Bertoldo C, Antranikian G, Ventosa A (2003) Screening and characterization of the protease CP1 produced by the moderately halophilic bacterium Pseudoalteromonas sp. strain CP76. Extremophiles 7:221–228. doi:10.1007/s00792-003-0316-9

    CAS  Google Scholar 

  • Sánchez-Porro C, Martin S, Mellado E, Ventosa A (2003) Diversity of moderately halophilic bacteria producing extracellular hydrolytic enzymes. J Appl Microbiol 94:295–300. doi:10.1046/j.1365-2672.2003.01834.x

    Article  Google Scholar 

  • Sánchez-Porro C, Rafael R, Cruz-Hernández N, González JM, Reyes-Guirao C, Navarro-Sampedro L, Carballo M, Ventosa A (2013) Draft genome of the marine gammaproteobacterium Halomonas titanicae. Genome Announc 1:e00013–e00083. doi:10.1128/genomeA.00083-13

    Article  Google Scholar 

  • Sass AM, McKew BA, Sass H, Fichtel J, Timmis KN, McGenity TJ (2008) Diversity of Bacillus-like organisms isolated from deep-sea hypersaline anoxic sediments. Saline Syst 4:1–11. doi:10.1186/1746-1448-4-8

    Article  Google Scholar 

  • Satyanarayana T, Johri BN, Prakash A (2012) Microorganisms in environmental management: microbes and environment. Springer, Berlin

    Book  Google Scholar 

  • Saum SH, Müller V (2008) Regulation of osmoadaptation in the moderate halophile Halobacillus halophilus: chloride, glutamate and switching osmolyte strategies. Saline Syst 4:2014. doi:10.1186/1746-1448-4-4

    Article  CAS  Google Scholar 

  • Saum SH, Sydow JF, Palm P, Pfeiffer F, Oesterhelt D, Müller V (2006) Biochemical and molecular characterization of the biosynthesis of glutamine and glutamate, two major compatible solutes in the moderately halophilic bacterium Halobacillus halophilus. J Bacteriol 188:6808–6815. doi:10.1128/JB.00781-06

    Article  CAS  Google Scholar 

  • Setati ME (2010) Diversity and industrial potential of hydrolaseproducing halophilic/halotolerant eubacteria. Afr J Biotechnol 9:1555–1560

    CAS  Google Scholar 

  • Sheehan BJ, Foster TJ, Dorman CJ, Park S, Stewart GS (1992) Osmotic and growth-phase dependent regulation of the eta gene of Staphylococcus aureus: a role for DNA supercoiling. Mol Gen Genet MGG 232:49–57. doi:10.1007/bf00299136

    Article  CAS  Google Scholar 

  • Shiaris MP (1989) Phenanthrene mineralization along a natural salinity gradient in an urban estuary, Boston Harbor, Massachusetts. Microbial Ecol 18:135–146. doi:10.1007/BF02030122

    Article  CAS  Google Scholar 

  • Shrivastav A, Dubey S, Ghosh T, Paliwal C, Maurya R, Mishra S (2015) Draft genome sequence of Halomonas hydrothermalis MTCC 5445, Isolated from the West Coast of India. Genome Announc 3:e01414–e01419. doi:10.1128/genomeA.01419-14

    Google Scholar 

  • Sigee DC (2005) Freshwater environments: the influence of physico-chemical conditions on microbial communities. In: Freshwater microbiology. Wiley, London, pp 47–103. doi:10.1002/0470011254.ch2

  • Siroosi M, Amoozegar MA, Khajeh K, Fazeli M, Rezaei MH (2014) Purification and characterization of a novel extracellular halophilic and organic solvent-tolerant amylopullulanase from the haloarchaeon, Halorubrum sp. strain Ha25. Extremophiles 18:25–33. doi:10.1007/s00792-013-0589-6

    Article  CAS  Google Scholar 

  • Sorokin DY, Janssen AJH, Muyzer G (2012) Biodegradation potential of halo (alkali) philic prokaryotes. Crit Rev Environ Sci Technol 42:811–856. doi:10.1080/10643389.2010.534037

    Article  CAS  Google Scholar 

  • Sripo T, Phongdara A, Wanapu C, Caplan AB (2002) Screening and characterization of aldehyde dehydrogenase gene from Halomonas salina strain AS11. J Biotechnol 95:171–179. doi:10.1016/S0168-1656(02)00006-8

    Article  CAS  Google Scholar 

  • Strillinger E, Grötzinger SW, Allers T, Eppinger J, Weuster-Botz D (2015) Production of halophilic proteins using Haloferax volcanii H1895 in a stirred-tank bioreactor. Appl Microbiol Biotechnol. doi:10.1007/s00253-015-7007-1

    Google Scholar 

  • Tang YJ, Carpenter SD, Deming JW, Krieger-Brockett B (2006) Depth-related influences on biodegradation rates of phenanthrene in polluted marine sediments of Puget Sound, WA. Mar Pollut Bull 52:1431–1440. doi:10.1016/j.marpolbul.2006.04.009

    Article  CAS  Google Scholar 

  • Tang J, Wang M, Wang F, Sun Q, Zhou Q (2011) Eco-toxicity of petroleum hydrocarbon contaminated soil. J Environ Sci 23:845–851. doi:10.1016/S1001-0742(10)60517-7

    Article  CAS  Google Scholar 

  • Tapilatu YH, Grossi V, Acquaviva M, Militon C, Bertrand J-C, Cuny P (2010) Isolation of hydrocarbon-degrading extremely halophilic archaea from an uncontaminated hypersaline pond (Camargue, France). Extremophiles 14:225–231. doi:10.1007/s00792-010-0301-z

    Article  CAS  Google Scholar 

  • Tazi L, Breakwell DP, Harker AR, Crandall KA (2014) Life in extreme environments: microbial diversity in Great Salt Lake. Utah Extremophiles 18:525–535. doi:10.1007/s00792-014-0637-x

    Article  Google Scholar 

  • Tejeda-Agredano MC, Gallego S, Niqui-Arroyo JL, Vila J, Grifoll M, Ortega-Calvo JJ (2010) Effect of interface fertilization on biodegradation of polycyclic aromatic hydrocarbons present in nonaqueous-phase liquids. Environ Sci Technol 45:1074–1081. doi:10.1021/es102418u

    Article  CAS  Google Scholar 

  • Thomas WH, Seibert D, Koeller P (2012) Controlled ecosystems: their use in the study of the effects of petroleum hydrocarbons on plankton. In: Physiological responses of marine biota to pollutants Z, p 323

  • Torres MA, Barros MP, Campos SCG, Pinto E, Rajamani S, Sayre RT, Colepicolo P (2008) Biochemical biomarkers in algae and marine pollution: a review. Ecotoxicol Environ Saf 71:1–15. doi:10.1016/j.ecoenv.2008.05.009

    Article  CAS  Google Scholar 

  • Ulrich AC, Guigard SE, Foght JM, Semple KM, Pooley K, Armstrong JE, Biggar KW (2009) Effect of salt on aerobic biodegradation of petroleum hydrocarbons in contaminated groundwater. Biodegradation 20:27–38. doi:10.1007/s10532-008-9196-0

    Article  CAS  Google Scholar 

  • Uribe-Jongbloed A, Bishop PL (2007) Comparative study of PAH removal efficiency under absence of molecular oxygen: effect of electron acceptor and hydrodynamic conditions. J Environ Eng Sci 6:367–376. doi:10.1139/s06-057

    Article  CAS  Google Scholar 

  • Veenagayathri K, Vasudevan N (2015) Degradation of dual phenolics by a moderately halophilic bacterial consortium and its degradation products. Int J Curr Microbiol App Sci 4:1083–1095

    Google Scholar 

  • Ventosa A, Arahal D (2002) Physico-chemical characteristics of hypersaline environments and their biodiversity: encyclopedia of life support system. EOLSS Publishers, Paris. http://www.eolss.net/sample-chapters/c03/e6-73-04-01.pdf

  • Ventosa A, Arahal DR (2009) Physico-chemical characteristics of hypersaline environments and their biodiversity. Extremophiles 2:1–6

    Google Scholar 

  • Ventosa A, Arahal DR, Volcani BE (1999) Studies on the microbiota of the Dead Sea—50 years later. In: Microbiology and biogeochemistry of hypersaline environments, pp 139–147

  • Ventosa A, de la Haba RR, Sánchez-Porro C, Papke RT (2015) Microbial diversity of hypersaline environments: a metagenomic approach. Curr Opin Microbiol 25:80–87. doi:10.1016/j.mib.2015.05.002

    Article  CAS  Google Scholar 

  • Verma A, Mual P, Mayilraj S, Krishnamurthi S (2015) Tamilnaduibacter salinus gen. nov., sp. nov., a halotolerant gammaproteobacterium within the family Alteromonadaceae, isolated from a salt pan in Tamilnadu, India. Int J Syst Evolut Microbiol 65:3248–3255. doi:10.1099/ijsem.0.000401

    Article  CAS  Google Scholar 

  • Volcani BE (1940) Studies on the microflora of the Dead Sea. PhD thesis, The Hebrew University of Jerusalem, Israel

  • Volcani BE (1944) The microorganisms of the Dead Sea. Papers collected to commemorate the 70th anniversary of Dr Chaim Weizmann, pp 71–85

  • Vreeland RH (1987) Mechanisms of halotolerance in microorganisms. CRC Crit Rev Microbiol 14:311–356. doi:10.3109/10408418709104443

    Article  CAS  Google Scholar 

  • Vreeland RH, Hochstein LI (1992) The biology of halophilic bacteria, vol 1. CRC Press, London

    Google Scholar 

  • Waino M, Ingvorsen K (2003) Production of beta-xylanase and beta-xylosidase by the extremely halophilic archaeon Halorhabdus utahensis. Extremophiles 7:87–93. doi:10.1007/s00792-002-0299-y

    CAS  Google Scholar 

  • Walker CH, Livingstone DR (2013) Persistent pollutants in marine ecosystems. Elsevier, Amsterdam

    Google Scholar 

  • Wang Y-N, Cai H, Chi C-Q, Lu A-H, Lin X-G, Jiang Z-F, Wu X-L (2007) Halomonas shengliensis sp. nov., a moderately halophilic, denitrifying, crude-oil-utilizing bacterium. Int J Syst Evol Microbiol 57:1222–1226. doi:10.1099/ijs.0.64973-0

    Article  CAS  Google Scholar 

  • Wang J, Zhang Z, Su Y, He W, He F, Song H (2008) Phytoremediation of petroleum polluted soil. Petrol Sci 5:167–171. doi:10.1007/s12182-008-0026-0

    Article  CAS  Google Scholar 

  • Wang Y-N, Chi C-Q, Cai M, Lou Z-Y, Tang Y-Q, Zhi X-Y, Li W-J, Wu X-L, Du X (2010) Amycolicicoccus subflavus gen. nov., sp. nov., an actinomycete isolated from a saline soil contaminated by crude oil. Int J Syst Evol Microbiol 60:638–643. doi:10.1099/ijs.0.010546-0

    Article  CAS  Google Scholar 

  • Wang X, Wang X, Liu M, Zhou L, Gu Z, Zhao J (2015) Bioremediation of marine oil pollution by Brevundimonas diminuta: effect of salinity and nutrients. Desalin Water Treat. doi:10.1080/19443994.2015.1106984

    Google Scholar 

  • Ward DM, Brock T (1978) Hydrocarbon biodegradation in hypersaline environments. Appl Environ Microbiol 35:353–359

    CAS  Google Scholar 

  • Watzman H (1997) Left for dead. New Scientist 153:37–41

    Google Scholar 

  • Wei X, Jiang Y, Chen X, Jiang Y, Lai H (2015) Amycolatopsis flava sp. nov., a halophilic actinomycete isolated from Dead Sea. Antonie Van Leeuwenhoek. doi:10.1007/s10482-015-0542-z

    Google Scholar 

  • Wejse PL, Ingvorsen K, Mortensen KK (2003) Purification and characterisation of two extremely halotolerant xylanases from a novel halophilic bacterium. Extremophiles 7:423–431. doi:10.1007/s00792-003-0342-7

    Article  CAS  Google Scholar 

  • Wilkansky B (1936) Life in the Dead Sea. Nature 138:467

    Article  Google Scholar 

  • Wolfe DA (2013) Fate and effects of petroleum hydrocarbons in marine ecosystems and organisms. In: Proceedings of a symposium, November 10–12, 1976, Olympic Hotel, Seattle, Washington. Elsevier

  • Xiang W, Guo J, Feng W, Huang M, Chen H, Zhao J, Zhang J, Yang Z, Sun Q (2008) Community of extremely halophilic bacteria in historic Dagong Brine Well in southwestern China. World J Microbiol Biotechnol 24:2297–2305. doi:10.1007/s11274-008-9744-0

    Article  Google Scholar 

  • Xue J, Yu Y, Bai Y, Wang L, Wu Y (2015) Marine oil-degrading microorganisms and biodegradation process of petroleum hydrocarbon in marine environments: a review. Curr Microbiol. doi:10.1128/genomeA.00457-15

    Google Scholar 

  • Yaakop AS, Chan CS, Kahar UM, Ee R, Chan K-G, Goh KM (2015) Draft genome sequence of Erythrobacter vulgaris strain O1, a glycosyl hydrolase-producing bacterium. Genome Announc. doi:10.1128/genomeA.00457-15

    Google Scholar 

  • Yang L, Lai C-T, Shieh WK (2000) Biodegradation of dispersed diesel fuel under high salinity conditions. Water Res 34:3303–3314. doi:10.1016/S0043-1354(00)00072-5

    Article  CAS  Google Scholar 

  • Yu H-Y, Li X (2015) Alkali-stable cellulase from a halophilic isolate, Gracilibacillus sp. SK1 and its application in lignocellulosic saccharification for ethanol production. Biomass Bioenergy 81:19–25. doi:10.1016/j.biombioe.2015.05.020

    Article  CAS  Google Scholar 

  • Yue H, Ling C, Yang T, Chen X, Chen Y, Deng H, Wu Q, Chen J, Chen G-Q (2014) A seawater-based open and continuous process for polyhydroxyalkanoates production by recombinant Halomonas campaniensis LS21 grown in mixed substrates. Biotechnol Biofuels 7:108–119. doi:10.1186/1754-6834-7-108

    Article  CAS  Google Scholar 

  • Zhang G, Ge H (2013) Protein hypersaline adaptation: insight from amino acids with machine learning algorithms. Protein J 32:239–245. doi:10.1155/2013/373275

    Article  CAS  Google Scholar 

  • Zhang G, Yi L (2013) Stability of halophilic proteins: from dipeptide attributes to discrimination classifier. Int J Biol Macromol 53:1–6

    Article  CAS  Google Scholar 

  • Zhang J, Yang J-C, Wang R-Q, Hou H, Du X-M, Fan S-K, Liu J-S, Dai J-L (2013) Effects of pollution sources and soil properties on distribution of polycyclic aromatic hydrocarbons and risk assessment. Sci Total Environ 463:1–10. doi:10.1016/j.scitotenv.2013.05.066

    Google Scholar 

  • Zheng C, Yu L, Huang L, Xiu J, Huang Z (2012) Investigation of a hydrocarbon-degrading strain, Rhodococcus ruber Z25, for the potential of microbial enhanced oil recovery. J Petrol Sci Eng 81:49–56. doi:10.1016/j.petrol.2011.12.019

    Article  CAS  Google Scholar 

  • Zhou Y, Li R, Gao X-Y, Lapidus A, Han J, Haynes M, Lobos E, Huntemann M, Pati A, Ivanova NN (2014) High quality draft genome sequence of the slightly halophilic bacterium Halomonas zhanjiangensis type strain JSM 078169T (DSM 21076T) from a sea urchin in southern China. Stand Genomic Sci 9:1020. doi:10.4056/sigs.5449586

    Article  Google Scholar 

  • Zhou H, Wang H, Huang Y, Fang T (2016) Characterization of pyrene degradation by halophilic Thalassospira sp. strain TSL5-1 isolated from the coastal soil of Yellow Sea, China. Int Biodeterior Biodegrad 107:62–69. doi:10.1016/j.ibiod.2015.10.022

    Article  CAS  Google Scholar 

  • Zhu D, Tanabe S-H, Xie C, Honda D, Sun J, Ai L (2014) Bacillus ligniniphilus sp. nov., an alkaliphilic and halotolerant bacterium isolated from sediments of the South China Sea. Int J Syst Evol Microbiol 64:1712–1717. doi:10.1099/ijs.0.058610-0

    Article  CAS  Google Scholar 

  • Zorgani MA, Patron K, Desvaux M (2014) New insight in the structural features of haloadaptation in α-amylases from halophilic Archaea following homology modeling strategy: folded and stable conformation maintained through low hydrophobicity and highly negative charged surface. J Comput-Aided Mol Des 28:721–734. doi:10.1007/s10822-014-9754-y

    Article  CAS  Google Scholar 

  • Zvyagintseva IS, Poglazova MN, Gotoeva MT, Belyaev SS (2001) Effect on the medium salinity on oil degradation by nocardioform bacteria. Microbiology 70:652–656. doi:10.1023/A:1013179513922

    Article  CAS  Google Scholar 

Download references

Acknowledgments

An Exploratory Research Grant Scheme from the Ministry of Higher Education Malaysia (FRGS R.J130000.7826.4F649) and a Research University Grant Scheme by the Ministry of Education, Malaysia (GUP Q.J130000.2545.09H95) to the Universiti Teknologi, Malaysia supported this work. MFE thanks the Libyan Government for the scholarship award (Libyan Ministry of Higher Education Scholarship Program No. 700/2007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Roswanira Abdul Wahab or Fahrul Huyop.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edbeib, M.F., Wahab, R.A. & Huyop, F. Halophiles: biology, adaptation, and their role in decontamination of hypersaline environments. World J Microbiol Biotechnol 32, 135 (2016). https://doi.org/10.1007/s11274-016-2081-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-016-2081-9

Keywords

Navigation