Advertisement

Bacteriophage biocontrol in wastewater treatment

  • Sabah A. A. JassimEmail author
  • Richard G. Limoges
  • Hassan El-Cheikh
REVIEW

Abstract

Waterborne bacterial pathogens in wastewater remains an important public health concern, not only because of the environmental damage, morbidity and mortality that they cause, but also due to the high cost of disinfecting wastewater by using physical and chemical methods in treatment plants. Bacteriophages are proposed as bacterial pathogen indicators and as an alternative biological method for wastewater treatment. Phage biocontrol in large scale treatment requires adaptive and aggressive phages that are able to overcome the environmental forces that interfere with phage–host interactions while targeting unwanted bacterial pathogens and preventing biofilms and foaming. This review will shed light on aspects of using bacteriophage programming technology in wastewater plants to rapidly target and reduce undesirable bacteria without harming the useful bacteria needed for biodegradation.

Keywords

Bacteriophage Phage reprogramming technology Biocontrol Water Wastewater treatment Sewage Activated sludge process 

Abbreviations

ASP

Activated sludge process

PFU

Plaque forming units

UNICEF

United Nations Children’s Fund

UV

Ultraviolet

WEF

World Economic Forum

WHO

World Health Organization

References

  1. Abdulamir AS, Jassim SAA, Abu Bakar F (2014) Novel approach of using a cocktail of designed bacteriophages against gut pathogenic E. coli for bacterial load biocontrol. Ann Clin Microbiol Antimicrob 13:39. http://www.ann-clinmicrob.com/content/pdf/s12941-014-0039-z.pdf
  2. Abedon ST (2010) The ‘nuts and bolts’ of phage therapy. Curr Pharm Biotechnol 11:1CrossRefGoogle Scholar
  3. Abedon ST, Thomas-Abedon C (2010) Phage therapy pharmacology. Curr Pharm Biotechnol 11:28–47CrossRefGoogle Scholar
  4. Aldoori AA, Mahdii EF, Abbas AK, Jassim SAA (2015) Bacteriophage biocontrol rescues mice bacteremic of clinically isolated mastitis from dairy cows associated with methicillin-resistant Staphyloccocus aureus. Adv Microbiol 5:383–403CrossRefGoogle Scholar
  5. Araki M (1986) Advanced slime control process with bacteriophage. Kogyo Yosui 332:25–30Google Scholar
  6. Atterbury RJ (2009) Bacteriophage biocontrol in animals and meat products. Microb Biotechnol 2(6):601–612CrossRefGoogle Scholar
  7. Atterbury RJ, Connerton PL, Dodd CE, Rees CE, Connerton IF (2003) Isolation and characterization of Campylobacter bacteriophages from retail poultry. Appl Environ Microbiol 69:4511–4518CrossRefGoogle Scholar
  8. Balogh B, Jones JB, Iriarte FB, Momol MT (2010) Phage therapy for plant disease control. Curr Pharm Biotechnol 11:48–57CrossRefGoogle Scholar
  9. Breitbart M, Hewson I, Felts B, Mahaffy JM et al (2003) Metagenomic analyses of an uncultured viral community from human feces. J Bacteriol 185:6220–6223CrossRefGoogle Scholar
  10. Bridle H (2014) Waterborne pathogens: detection methods and applications. Academic Press, Elsevier, London, pp 24–26. ISBN 978-0-444-59543-0Google Scholar
  11. Brockhurst MA, Buckling A, Rainey PB (2006) Spatial heterogeneity and the stability of host-parasite coexistence. J Evol Biol 19(2):374–379CrossRefGoogle Scholar
  12. Cabral JPS (2010) Water microbiology. Bacterial pathogens and water. Int J Environ Res Public Health 7(10):3657–3703CrossRefGoogle Scholar
  13. Calci KR, Burkhardt W, Watkins WD, Rippey SR (1998) Occurrence of male specific bacteriophage in feral and domestic animal wastes, human feces, and human-associated wastewaters. Appl Environ Microbiol 64:5027–5029Google Scholar
  14. Charles G (2008) Pathogens removal. In: Henze M, Van Loosdrecht MCM, Ekama GA, Brdjanovic D (eds) Biological wastewater treatment: principles, modelling and design, chapter 8. IWA Publishing, London, pp 221–244Google Scholar
  15. Choi J, Kotay SM, Goel R (2011) Bacteriophage-based biocontrol of biological sludge bulking in wastewater. Bioeng Bugs 2(4):214–217CrossRefGoogle Scholar
  16. Croci DL, de Medici D, Scalfaro C et al (2000) Determination of enteroviruses, hepatitis A virus, bacteriophages and Escherichia coli in Adriatic Sea mussels. J Appl Microbiol 88(2):293–298CrossRefGoogle Scholar
  17. Dimri AG, Singh D, Sinha S, Chatterjee R, Ankita ML, Chacko KM (2014) Essential aspects of water safety: a case study on road side hawkers in Delhi, India. J Biomed Pharm Res 3(4):70–78Google Scholar
  18. Ewert DL, Paynter MJ (1980) Enumeration of bacteriophages and host bacteria in sewage and the activated-sludge treatment process. Appl Environ Microbiol 39(3):576–583Google Scholar
  19. Fan H, Mi Z, Fan J, Zhang L, Hua Y, Wang L, Cui X, Zhang W, Zhang B, Huang Y, Li J, Wang X, Li C, Zhang Z, An X, Yin X, Chen J, Tong Y (2012) A fast method for large-scale isolation of phages from hospital sewage using clinical drug-resistant Escherichia coli. Afr J Biotechnol 11(22):6143–6148Google Scholar
  20. Fenwick A (2006) Waterborne infectious diseases—could they be consigned to history? Science 313:1077–1081CrossRefGoogle Scholar
  21. Fujiwara A, Fujisawa M, Hamasaki R, Kawasaki T et al (2011) Biocontrol of Ralstonia solanacearum by treatment with lytic bacteriophages. Appl Environ Microbiol 77(12):4155–4162CrossRefGoogle Scholar
  22. Furuse K, Osawa S, Kawashiro J, Tanaka R et al (1983) Bacteriophage distribution in human faeces: continuous survey of healthy subjects and patients with internal and leukaemic diseases. J Gen Virol 64(Pt 9):2039–2043CrossRefGoogle Scholar
  23. Gale P (2001) Developments in microbiological risk assessment for drinking water. J Appl Microbiol 91:191–205CrossRefGoogle Scholar
  24. George I, Crop P, Servais P (2001) Use of β-D-galactosidase and β-D-glucuronidase activities for quantitative detection of total and faecal coliforms in wastewater. Can J Microbiol 47:670–675Google Scholar
  25. Gill JJ (2010) Practical and theoretical considerations for the use of bacteriophages in food systems. In: Sabour PM, Griffiths MW (eds) Bacteriophages in the control of food-and waterborne pathogens. ASM Press, Washington, pp 217–235CrossRefGoogle Scholar
  26. Goldman G, Starosvetsky J, Armon R (2009) Inhibition of biofilm on UF membrane by use of specific bacteriophages. J Membr Sci 342:145–152CrossRefGoogle Scholar
  27. Goodridge LD (2010) Designing phage therapeutics. Curr Pharm Biotechnol 11:1527CrossRefGoogle Scholar
  28. Goodridge L, Abedon ST (2003) Bacteriophage biocontrol and bioprocessing: application of phage therapy to industry. SIM News 53(6):254–262Google Scholar
  29. Grabow WOK (1996) Waterborne diseases: update on water quality assessment and control. Water SA 22(2):193–202Google Scholar
  30. Grabow WOK, Coubrough P, Nupen EM, Bateman BW (1984) Evaluation of coliphages as indicators of the virological quality of sewage-polluted water. Water SA 10:7–14Google Scholar
  31. Grabow WOK, Holtzhausen CS, de Villiers JC (1993) Research on bacteriophages as indicators of water quality. WRC report no. 321/1/93, Water Research Commission, PretoriaGoogle Scholar
  32. Hagens S, Loessner MJ (2010) Bacteriophage for biocontrol of foodborne pathogens: calculations and considerations. Curr Pharm Biotechnol 11:58–68CrossRefGoogle Scholar
  33. Hanlon GW, Denyer SP, Olliff CJ, Ibrahim LJ (2001) Reduction in exopolysaccharide viscosity as an aid to bacteriophage penetration through Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 67:2746–2753CrossRefGoogle Scholar
  34. Havelaar AH (1987) Virus, bacteriophages and water purification. Vet Q 9(4):356–360CrossRefGoogle Scholar
  35. Havelaar AH, Furuse K, Hogeboom WM (1986) Bacteriophages and indicator bacteria in human and animal faeces. J Appl Bacteriol 60:255–262CrossRefGoogle Scholar
  36. Hibma AM, Jassim SAA, Griffiths MW (1997) Infection and removal of L-forms of Listeria monocytogenes with bred bacteriophage. Int J Food Microbiol 34(3):197–207CrossRefGoogle Scholar
  37. Hoyle LE, Pitt PA, Stone AL, de los Reyes III FL (2006) Investigating steam application for reducing foaming in activated sludge systems. In: Proceedings of the Water Environment Federation (WEFTEC’06), Water Environment Federation, pp 321(10)–330(10)Google Scholar
  38. Hsu FC, Shieh YSC, Sobsey MD (2002) Enteric bacteriophages as potential fecal indicators in ground beef and poultry meat. J Food Prot 65(1):93–99Google Scholar
  39. Hughes DE, Stafford DA (1976) The microbiology of the activated-sludge process. CRC Crit Rev Environ Sci Technol 7:233–257Google Scholar
  40. Hunter PR, Colford JM, LeChevallier MW, Binder S, Berger PS (2001) Waterborne diseases. Emerg Infect Dis 7(3):544–545CrossRefGoogle Scholar
  41. Jassim SAA, Limoges RG (2013) Impact of external forces on cyanophage–host interactions in aquatic ecosystems. World J Microbiol Biotechnol 29(10):1751–1762. doi: 10.1007/s11274-013-1358-5 CrossRefGoogle Scholar
  42. Jassim SAA, Limoges RG (2014) Natural solution to antibiotic resistance: bacteriophages ‘The Living Drugs’. World J Microbiol Biotechnol 30(8):2153–2170. doi: 10.1007/s11274-014-1655-7 CrossRefGoogle Scholar
  43. Jassim SAA, Denyer SP, Stewart GSAB (1995) Selective virus culture. WO/1995/023848. http://patentscope.wipo.int/search/en/WO1995023848
  44. Jassim SAA, Abdulamir AS, Abu Bakar F (2010) Methods for bacteriophage design. WO/2010/064044. http://www.wipo.int/pctdb/en/wo.jsp?WO=2010064044
  45. Jassim SAA, Abdulamir AS, Abu Bakar F (2012) Novel phage-based bio-processing of pathogenic Escherichia coli and its biofilms. World J Microbiol Biotechnol 28:47–60CrossRefGoogle Scholar
  46. Jones JB, Vallad GE, Iriarte FB, Obradović A et al (2012) Considerations for using bacteriophages for plant disease control. Bacteriophage 2(4):208–214CrossRefGoogle Scholar
  47. Kennedy JE, Wei CI, Oblinger JL (1986) Distribution of coliphages in various foods. J Food Prot 49(12):944–951Google Scholar
  48. Khairnar K, Pal P, Chandekar RH, Paunikar WN (2014) Isolation and characterization of bacteriophages infecting Nocardioforms in wastewater treatment plant. Biotechnol Res Int Article ID 151952. doi: 10.1155/2014/151952
  49. Khan MA, Satoh H, Katayama H, Kurisu F, Mino T (2002a) Bacteriophages isolated from activated sludge processes and their polyvalency. Water Res 36(13):3364–3370CrossRefGoogle Scholar
  50. Khan MA, Satoh H, Mino T, Katayama H, Kurisu F, Matsuo T (2002b) Bacteriophage-host interaction in the enhanced biological phosphate removing activated sludge system. Water Sci Technol 46(1–2):39–43Google Scholar
  51. Klumpp J, Loessner MJ (2013) Listeria phages genomes, evolution, and application. Bacteriophage 3(3):e26861. https://www.landesbioscience.com/journals/bacteriophage/2013BACTERIOPHAGE0033R.pdf
  52. Kott Y, Roze N, Sperber S, Betzer N (1974) Bacteriophages as viral pollution indicators. Water Res 8:165–171CrossRefGoogle Scholar
  53. Kutter E, Sulakvelidze A (2005) Bacteriophages biology and applications. CRC Press, Boca RatonGoogle Scholar
  54. Kutter E, De Vos D, Gvasalia G, Alavidze Z et al (2010) Phage therapy in clinical practice: treatment of human infections. Curr Pharm Biotechnol 11(1):69–86CrossRefGoogle Scholar
  55. Leclerc H, Edberg S, Pierzo V, Delattre JM (2000) Bacteriophages as indicators of enteric viruses and public health risk in groundwaters. J Appl Microbiol 88:5–21CrossRefGoogle Scholar
  56. Lightharst B, Oglesby RT (1989) Bacteriology of an activated sludge wastewater treatment plant. A Guide to Methodology. J Water Pollut Control Fed 41:267–281Google Scholar
  57. Loc-Carrillo C, Abedon ST (2011) Pros and cons of phage therapy. Bacteriophage 1:111–114. doi: 10.4161/bact.1.2.14590 CrossRefGoogle Scholar
  58. Mamais D, Kalaitzi E, Andreadakis A (2011) Foaming control in activated sludge treatment plants by coagulants addition. Global Nest J 13(3):237–245Google Scholar
  59. Medema GJ, Payment P, Dufour A, Robertson W, Waite M, Hunter P, Kirby R, Anderson Y (2003) Safe drinking water: an ongoing challenge. In: WHO-OECD (ed) Assessing microbial safety of drinking water improving approaches and method, WHO and OECD. IWA Publishing, London, pp 11–45Google Scholar
  60. Merril CR, Scholl D, Adhya SL (2003) The prospect for bacteriophage therapy in Western medicine. Nat Rev Drug Discov 2:489–497CrossRefGoogle Scholar
  61. Morinigo MA, Wheeler D, Berry C, Jones C, Munoz MA, Cornax R, Borrego JJ (1992) Evaluation of different bacteriophage groups as faecal indicators in contaminated natural waters in Southern England. Water Res 26:267–271CrossRefGoogle Scholar
  62. Nguyen T, Roddick FA, Fan L (2012) Biofouling of water treatment membranes: a review of the underlying causes, monitoring techniques and control measures. Membranes 2:804–840. doi: 10.3390/membranes2040804 CrossRefGoogle Scholar
  63. Pal P, Khairnar K, Paunikarn WN (2014) Causes and remedies for filamentous foaming in activated sludge treatment plant. Global Nest J 16(4):762–772Google Scholar
  64. Park SC, Nakai T (2003) Bacteriophage control of Pseudomonas plecoglossicida infection in ayu Plecoglossus altivelis. Dis Aquat Org 53:33–39CrossRefGoogle Scholar
  65. Park SC, Shimamura I, Fukunaga M, Mori KI, Nakai T (2000) Isolation of bacteriophages specific to a fish pathogen, Pseudomonas plecoglossicida, as a candidate for disease control. Appl Environ Microbiol 66:1416–1422CrossRefGoogle Scholar
  66. Pasinetti E, Emondi V, Peroni M (2005) In situ test for biological foam removal. In: Proceedings of the Water Environment Federation (WEFTEC’05), Water Environment FederationGoogle Scholar
  67. Payment P, Franco E (1993) Clostridium perfringens and somatic coliphages as indicators of the efficiency of drinking water treatment for viruses and protozoan cysts. Appl Environ Microbiol 59:2418–2424Google Scholar
  68. Petrovski S, Seviour RJ, Tillett D (2011a) Characterization of the genome of the polyvalent lytic bacteriophage GTE2, which has potential for biocontrol of Gordonia, Rhodococcus, and Nocardia stabilized foams in activated sludge plants. Appl Environ Microbiol 77(12):3923–3929CrossRefGoogle Scholar
  69. Petrovski S, Seviour RJ, Tillett D (2011b) Prevention of Gordonia and Nocardia stabilized foam formation by using bacteriophage GTE7. Appl Environ Microbiol 77(21):7864–7867CrossRefGoogle Scholar
  70. Pick EB (1995) Aerobic bacteria. In: Cruds CR, Awkes HA (eds) Ecological aspects of used-water treatment, vol 1. Academic Press, LondonGoogle Scholar
  71. Potera C (2013) Phage renaissance: new hope against antibiotic resistance. Environ Health Perspect 121:48–53CrossRefGoogle Scholar
  72. Ramírez-Castillo FY, Loera-Muro A, Jacques M, Garneau P, Avelar-González FJ, Harel J, Guerrero-Barrera AL (2015) Waterborne pathogens: detection methods and challenges. Pathogens 4:307–334. doi: 10.3390/pathogens4020307 CrossRefGoogle Scholar
  73. Rustum R (2009) Modelling activated sludge wastewater treatment plants using artificial intelligence techniques (fuzzy logic and neural networks). Ph.D. thesis. Heriot-Watt University, UKGoogle Scholar
  74. Scarpino PV (1978) Bacteriophage indicators. In: Berg G (ed) Indicators of viruses in water and food. Ann Arbor Science Publishers, Ann Arbor, pp 201–227Google Scholar
  75. Seas C, Alarcon M, Aragon JC, Beneit S, Quiñonez M, Guerra H, Gotuzzo E (2000) Surveillance of bacterial pathogens associated with acute diarrhea in lima. Peru Int J Infect Dis 4:96–99CrossRefGoogle Scholar
  76. Shao YJ, Starr M, Kaporis K, Kim HS, Jenkins D (1997) Polymer addition as a solution to Nocardia foaming problems. Water Environ Res 69(1):25–27CrossRefGoogle Scholar
  77. Shute J (2013) Too much of a good thing. The telegraph. http://s.telegraph.co.uk/graphics/projects/antibiotic-resistance/index.html
  78. Sillankorva SM, Oliveira H, Azeredo J (2012) Bacteriophages and their role in food safety. Int J Microbiol Article ID 863945. doi: 10.1155/2012/863945
  79. Simkova A, Cervenka J (1981) Coliphages as ecological indicators of enteroviruses in various water systems. Bull World Health Organ 59:611–618Google Scholar
  80. Stetler RE (1984) Coliphages as indicators of enteroviruses. Appl Environ Microbiol 48:668–670Google Scholar
  81. Suárez VB, Quiberoni A, Binetti AG, Reinheimer JA (2002) Thermophilic lactic acid bacteria phages isolated from Argentinian dairy industries. J Food Prot 65(10):1597–1604Google Scholar
  82. Sulakvelidze A, Kutter E (2005) Bacteriophage therapy in humans. In: Kutter E, Sulakvelidze A (eds) Bacteriophages: biology and application. CRC Press, Boca Raton, pp 381–436Google Scholar
  83. Sulakvelidze A, Alavidze Z, Morris JG Jr (2001) Bacteriophage therapy. Antimicrob Agents Chemother 45(3):649–659CrossRefGoogle Scholar
  84. Thomas JA, Soddell JA, Kurtboke DI (2002) Fighting foam with phages? Water Sci Technol 46(1–2):511–518Google Scholar
  85. USFDA (2006) Food additives permitted for direct addition to food for human consumption; bacteriophage preparation. FDA, Washington. Publishing FDA Web. http://www.fda.gov/OHRMS/DOCKETS/98fr/cf0559.pdf. Accessed 3 Aug 2006
  86. Vaughn JM, Metcalf TG (1975) Coliphages as indicators of enteric viruses in shellfish and shellfish raising estuarine waters. Water Res 9:613–616CrossRefGoogle Scholar
  87. Verheust C, Pauwels K, Mahillon J, Helinski DR, Herman P (2010) Contained use of bacteriophages: risk assessment and biosafety recommendations. Appl Biosaf 15(1):32–44CrossRefGoogle Scholar
  88. Wagner M, Loy A (2002) Bacterial community composition and function in sewage treatment systems. Curr Opin Biotechnol 13:218–227CrossRefGoogle Scholar
  89. WEF (2015) Global risks 2015 reportGoogle Scholar
  90. Weinbauer MG (2004) Ecology of prokaryotic viruses. FEMS Microbiol Rev 28(2):127–181CrossRefGoogle Scholar
  91. WHO (2008) Guidelines for drinking-water quality, incorporating 1st and 2nd Addenda, vol 1, Recommendations, 3rd edn. WHO, Geneva, Switzerland. http://www.who.int/water_sanitation_health/dwq/fulltext.pdf
  92. WHO (2011) Guidelines for drinking-water quality 4th edn, Geneva, Switzerland. ISBN 978 92 4 154815 1. http://apps.who.int/iris/bitstream/10665/44584/1/9789241548151_eng.pdf
  93. WHO and UNICEF (2014) Progress on drinking water and sanitation. ISBN 978 92 4 150724 0Google Scholar
  94. Withey S, Cartmell E, Avery LM, Stephenson T (2005) Bacteriophages-potential for application in wastewater treatment processes. Sci Total Environ 339(1–3):1–18CrossRefGoogle Scholar
  95. Wommack KE, Colwell RR (2000) Virioplankton: Viruses in aquatic ecosystems. Microbiol Mol Biol Rev 64(1):69–114. doi: 10.1128/MMBR.64.1.69-114.2000 CrossRefGoogle Scholar
  96. Xiong Y, Liu Y (2010) Biological control of microbial attachment: a promising alternative for mitigating membrane biofouling. Appl Microbiol Biotechnol 86(3):825–837CrossRefGoogle Scholar
  97. Zhang Y, Hu Z (2013) Combined treatment of Pseudomonas aeruginosa biofilms with bacteriophages and chlorine. Biotechnol Bioeng 110(1):286–295CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Sabah A. A. Jassim
    • 1
    Email author
  • Richard G. Limoges
    • 1
  • Hassan El-Cheikh
    • 1
  1. 1.Applied Bio Research Inc.WindsorCanada

Personalised recommendations