Skip to main content
Log in

Screening of cyanobacterial extracts for synthesis of silver nanoparticles

  • Short Communication
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Improvement of reliable and eco-friendly process for synthesis of metallic nanoparticles is a significant step in the field of application nanotechnology. One approach that shows vast potential is based on the biosynthesis of nanoparticles using micro-organisms. In this study, biosynthesis of silver nanoparticles (AgNP) using 30 cyanobacteria were investigated. Cyanobacterial aqueous extracts were subjected to AgNP synthesis at 30 °C. Scanning of these aqueous extracts containing AgNP in UV–Visible range showed single peak. The λ max for different extracts varied and ranged between 440 and 490 nm that correspond to the “plasmon absorbance” of AgNP. Micrographs from scanning electron microscope of AgNP from cyanobacterial extracts showed that though synthesis of nanoparticles occurred in all strains but their reaction time, shape and size varied. Majority of the nanoparticles were spherical. Time taken for induction of nanoparticles synthesis by cyanobacterial extracts ranged from 30 to 360 h and their size from 38 to 88 nm. In terms of size Cylindrospermum stagnale NCCU-104 was the best organism with 38 and 40 nm. But in terms of time Microcheate sp. NCCU-342 was the best organism as it took 30 h for AgNP synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Ahmad A, Mukherjee P, Senapati S,  Mandal D, Khan MI, Kumar R, Sastry M (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Collids Surf B: Biointer 28:313–318

    Article  CAS  Google Scholar 

  • Brayner R, Barberousse H, Hernadi M, Djedjat C, Yepremian C, Coradin T (2007) Cyanobacteria as bioreactors for the synthesis of Au, Ag, Pd, and Pt nanoparticles via an enzyme-mediated route. J Nanosci Nanotechnol 7:2696–2708

    Article  CAS  Google Scholar 

  • Callegari A, Tonti D, Chergui M (2003) Photochemically grown silver nanoparticles with wavelength-controlled size and shape. Nano Lett 3:1565–1568

    Article  CAS  Google Scholar 

  • Chen M, Feng YG, Wang X, Li TC, Zhang JY, Qian DJ (2007) Silver nanoparticles capped by oleylamine: Formation, growth and self-organization. Langmuir 23:5296–5304

    Article  CAS  Google Scholar 

  • Haverkamp RG, Marshall AT (2009) The mechanism of metal nanoparticle formation in plants: limits on accumulation. J Nanopart Res 11(6):1453–1463

    Article  CAS  Google Scholar 

  • Henglein A (1993) A physiological properties of small particles in solution: microelectrode reaction, chemisorption, composite metal particles, and the atom to metal transition. J Phy Chem B 97:5457–5471

    Article  CAS  Google Scholar 

  • Jana NR, Sau TK, Pal T (1999) Growing small silver particles as redox catalyst. J Phys Chem B 103:115–121

    Article  CAS  Google Scholar 

  • Jena J, Pradhan N, Dash BP Shukla LB, Panda PK (2013) Biosynthesis and characterization of silver nanoparticles using microalga Chlorococcum humicola and it's antibacterial activity. Int J Nanomat Biostr 3(1):1–8

    Article  Google Scholar 

  • Klaus T, Joerger R, Olsson E, Granqvist CG (1999) Silver based crystalline nanoparticles. Microbially fabricated. Proc Natl Acad Sci USA 96:13611–13614

    Article  CAS  Google Scholar 

  • Lee HJ, Jeong SH (2005) Bacteriostasis and skin innoxiousness of nanosize silver colloids on textile fabrics. Text Res J 75:551–556

    Article  CAS  Google Scholar 

  • Lengke MF, Fleet ME, Southam G (2006) Synthesis of platinum nanoparticles by reaction of filamentous cyanobacteria with platinum (IV) chloride. Langmuir 22:7318–7323

    Article  CAS  Google Scholar 

  • Lengke MF, Fleet ME, Southam G (2007a) Synthesis of palladium nanoparticles by reaction of filamentous cyanobacteria biomass with palladium (II) chloride complex. Langmuir 23:8982–8987

    Article  CAS  Google Scholar 

  • Lengke MF, Fleet ME, Southam G (2007b) Biosynthesis of silver nanoparticles by filamentous cyanobacteria from silver (I) nitrate complex. Langmuir 23:2694–2699

    Article  CAS  Google Scholar 

  • Mahdieh M, Zolanvari A, Azimee AS, Mahdieh M (2012) Green biosynthesis of silver nanoparticles by Spirulina platensis. Sci Irani 19(3):926–929

    Article  CAS  Google Scholar 

  • Maillard M, Huang P, Brus L (2003) Silver nanodisk growth by surface plasmon enhanced photoreduction of adsorbed [Ag+]. Nano Lett 3:1611–1615

    Article  CAS  Google Scholar 

  • Manna A, Imae T, Aoi K, Okada M, Yogo T (2001) Synthesis of dendrimer-passivated nobel metal nanoparticles in a polar medium: comparison of size between silver and gold particles. Chem Mater 13:1674–1681

    Article  CAS  Google Scholar 

  • Mubarak DA, Sasikala M, Gunasekaran M, Thajuddin N (2011) Biosynthesis and characterization of silver nanoparticles using marine cyanobacterium, Oscillatoria willei NTDM01. Dig J Nanomat Biostr 6(2):385–390

    Google Scholar 

  • Mukherjee P, Senapati S, Mandal D, Ahmed A, Khan MI, Kumar R, Sastry M (2002) Extracellular synthesis of gold nanoparticles by fungus “Fusarium oxysporum”. ChemBioChem 3:461–463

    Article  CAS  Google Scholar 

  • Nam KT, Lee YJ, Krauland EM, Kottamann ST, Belcher AM (2008) Peptide mediated reduction of silver ions on engineered biological scaffolds. ACS Nano 2:1480–1486

    Article  CAS  Google Scholar 

  • Nayak RP, Pradhan N, Behera D, Pradhan KM, Mishra S,Sukla LB, Mishra BK (2011) Green synthesis of silver nanoparticle by penicillium purpurogenum NPMF: the process and optimization. J Nanopart Res 13:3129–3137

    Article  CAS  Google Scholar 

  • Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depends on the shape of the nanoparticles? A study of the gram-negative bacterium Escherichia Coli. Appl Enviorn Microbiol 73:1712–1720

    Article  CAS  Google Scholar 

  • Pavani KV, Gayathramma K, Banerjee A, Shah S (2013) Phyto-synthesis of silver nanoparticles using extracts of Ipomea indica flowers. Am J Nanomater 1(1):5–8

    Google Scholar 

  • Pradhan N, Nayak RR, Pradhan AK, Sukla LB, Mishra BK (2011) In situ synthesis of entrapped silver nanoparticles by a Fungus-Penicilliumpurpurogenum. Nano Sci Nanotechnol Lett 3:1–7

    Article  Google Scholar 

  • Roychoudhury P, Pal R (2014) Synthesis and characterization of nanosilver-A blue green approach. Indian J Appl Res 4(1):69–72

    Google Scholar 

  • Saha S, Malik MM, Qureshi MS (2012) Characterization and synthesis of silver nanoparticle using leaf extract of Pipremnum aureum.Int J Nanomater and Biostr 2:1–4

    Google Scholar 

  • Sastry M, Mayya KS, Bandyopadhyay K (1997) pH-dependant changes in optical properties of carboxylic acid derivatized silver colloidal particles. Colloids Surf A 127:221–228

    Article  CAS  Google Scholar 

  • Sastry M, Patil V, Sainkar SR (1998) Electrostatically controlled diffusion of carboxylic acid derivatized silver colloidal particles in thermally evaporated fatty amine films. J Phys Chem B 102:1404–1410

    Article  CAS  Google Scholar 

  • Solovev AY, Potekhina TS, Chernova IA (2007) Track membrane with immobilized colloid silver particles. Russ J Appl Chem 80:438–442

    Article  CAS  Google Scholar 

  • Sonnichsen C, Franzl T, Wilk T, Von PG, Feldmann J (2002) Plasmon resonance in large noble-metal clusters. New J Phys 4:931–938

    Article  Google Scholar 

  • Stainer RY, Kunisawa R, Mandel M, Cohen-Bazire G (1971) Purification and properties of unicellular blue–green algae. Bacteriol Rev 35:171–205

    Google Scholar 

  • Sudha SS, Rajamanickam K, Rengaramanujam J (2013) Microalgae mediated synthesis of silver nanoparticles and their antibacterial activity against pathogenic bacteria. Indian J Exp Biol 52:393–399

    Google Scholar 

  • Tan S, Erol M, Attygalle A, Du H et al (2007) Synthesis of positively charged silver nanoparticles via photoreduction of AgNO3 in branched polyethyleneimine/HEPES solutions. Langmuir 23:9836–9843

    Article  CAS  Google Scholar 

  • Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomed Nanotechnol Biol Med 6:257–262

    Article  CAS  Google Scholar 

  • Umer A, Naveed S, Ramzan N (2012) Selection of suitable method for the synthesis of copper nanoparticles. Nano Brief Rep Rev 7(5):1230005–1230023

    Google Scholar 

  • Vijayaraghavan K, Nalini SPK (2010) Biotemplates in the green synthesis of silver nanoparticles. Biotechnol J 5:1098–1110

    Article  CAS  Google Scholar 

  • Vijayaraj D, Anarkali J, Rajathi K, Sridhar S (2012) Green synthesis and characterization of silver nanoparticles from the leaf extract Aristolochia bracteata and its antimicrobial efficacy. Int J Nanomater Biostr 2:11–15

  • Willner Baron R, Willner B (2006) Growing metal nanoparticles by enzymes. Adv Mater 18:1109–1120

    Article  CAS  Google Scholar 

  • Xie J, Lee JY, Wang DIC, Ting YP (2007) SilverNanoplates: from Biological to Biomimetic Synthesis. ACS Nano 1:429–439

    Article  CAS  Google Scholar 

  • Yang X, Li Q, Wang H, Huang J, Lin L, Wang W, Sun D, Su Y, Berya JO, Hong L, Wang Y, He N, Jia L (2010) Green synthesis of palladium nanoparticles using  broth of Cinnamom camphora leaf. J Nanopart Res 12:1589–1598

    Article  CAS  Google Scholar 

  • Zarrouk C (1966) Contribution a’ l’e´tude d’une cyanophyce’e. Influence de divers facteurs physiques et chimiques sur la croissance et la photosynthe’se de Spirulina maxima. Ph.D. thesis, Paris

Download references

Acknowledgments

The financial support provided by UGC, Government of India is greatly acknowledged. We also acknowledge Director of Centre of Nanotechnology, Jamia Mllia Islamia, New Delhi, India for helping in SEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tasneem Fatma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Husain, S., Sardar, M. & Fatma, T. Screening of cyanobacterial extracts for synthesis of silver nanoparticles. World J Microbiol Biotechnol 31, 1279–1283 (2015). https://doi.org/10.1007/s11274-015-1869-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-015-1869-3

Keywords

Navigation