Advertisement

Galactose supplementation enhance sialylation of recombinant Fc-fusion protein in CHO cell: an insight into the role of galactosylation in sialylation

  • Jintao Liu
  • Jie Wang
  • Li Fan
  • Xinning Chen
  • Dongdong Hu
  • Xiancun Deng
  • H. Fai Poon
  • Haibin Wang
  • Xuping LiuEmail author
  • Wen-Song TanEmail author
Original Paper

Abstract

Sialic acid levels of therapeutic glycoprotein play an important role in plasma half-life. An undesirable decrease of sialic acid content was observed when we increased Fc-fusion protein productivity fourfold in a GS-CHO cell line by bioprocess optimization. We investigated the potential mechanism for the sialic acid content reduction. We found that limited nucleotide sugar precursor and the extracellular sialidase were not responsible for the reduction of the sialic acid content after titer improvement. Oligosaccharide analysis revealed that the lack of protein galactosylation was the potential cause for the reduction of sialic acid content. Thus we validated this notion by evaluated galactose supplementation in 2 L bioreactors. Cell culture performance was not impacted by addition of up to 40 mM galactose except for the glucose consumption rate. Addition of 20 mM galactose to the bioreactor resulted in the increase of 44 % for total sialic acid content and 20.3 % for sialylated glycans. These data were further validated when the process was run on 200 L scaled bioreactor. These data together show that the galactosylation plays an apparent role in sialylation in our current system.

Keywords

Fc-fusion protein CHO cell Glycosylation Sialylation Galactose Galactosylation 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 21206040, 21406066), the National High Technology Research and Development Program of China (863 Program) (No. 2012AA02A303), the National Science and Technology Major Project (No. 2013ZX10004003-003-003), the Fundamental Research Funds for the Central Universities (WF1214035).

References

  1. Ahn WS, Jeon JJ, Jeong YR, Lee SJ, Yoon SK (2008) Effect of culture temperature on erythropoietin production and glycosylation in a perfusion culture of recombinant CHO cells. Biotechnol Bioeng 101:1234–1244CrossRefGoogle Scholar
  2. Altamirano C, Paredes C, Cairo JJ, Godia F (2000) Improvement of CHO cell culture medium formulation: simultaneous substitution of glucose and glutamine. Biotechnol Prog 16:69–75CrossRefGoogle Scholar
  3. Altamirano C, Cairo J, Godia F (2001) Decoupling cell growth and product formation in Chinese hamster ovary cells through metabolic control. Biotechnol Bioeng 76:351–360CrossRefGoogle Scholar
  4. Altamirano C, Illanes A, Becerra S, Cairo JJ, Godia F (2006) Considerations on the lactate consumption by CHO cells in the presence of galactose. J Biotechnol 125:547–556CrossRefGoogle Scholar
  5. Baker KN, Rendall MH, Hills AE, Hoare M, Freedman RB, James DC (2001) Metabolic control of recombinant protein N-glycan processing in NS0 and CHO cells. Biotechnol Bioeng 73:188–202CrossRefGoogle Scholar
  6. Chee Furng Wong D, Tin Kam Wong K, Tang Goh L, Kiat Heng C, Gek Sim Yap M (2005) Impact of dynamic online fed-batch strategies on metabolism, productivity and N-glycosylation quality in CHO cell cultures. Biotechnol Bioeng 89:164–177CrossRefGoogle Scholar
  7. Chuan KH, Lim SF, Martin L, Yun CY, Loh SO, Lasne F, Song Z (2006) Caspase activation, sialidase release and changes in sialylation pattern of recombinant human erythropoietin produced by CHO cells in batch and fed-batch cultures. Cytotechnology 51:67–79CrossRefGoogle Scholar
  8. Clark KJ, Griffiths J, Bailey KM, Harcum SW (2005) Gene-expression profiles for five key glycosylation genes for galactose-fed CHO cells expressing recombinant IL-4/13 cytokine trap. Biotechnol Bioeng 90:568–577CrossRefGoogle Scholar
  9. Crowell CK, Grampp GE, Rogers GN, Miller J, Scheinman RI (2007) Amino acid and manganese supplementation modulates the glycosylation state of erythropoietin in a CHO culture system. Biotechnol Bioeng 96:538–549CrossRefGoogle Scholar
  10. Dalziel M, Crispin M, Scanlan CN, Zitzmann N, Dwek RA (2014) Emerging principles for the therapeutic exploitation of glycosylation. Science 343:1235681CrossRefGoogle Scholar
  11. Gawlitzek M, Valley U, Wagner R (1998) Ammonium ion and glucosamine dependent increases of oligosaccharide complexity in recombinant glycoproteins secreted from cultivated BHK-21 cells. Biotechnol Bioeng 57:518–528CrossRefGoogle Scholar
  12. Gawlitzek M, Ryll T, Lofgren J, Sliwkowski MB (2000) Ammonium alters N-glycan structures of recombinant TNFR-IgG: degradative versus biosynthetic mechanisms. Biotechnol Bioeng 68:637–646CrossRefGoogle Scholar
  13. Ghaderi D, Zhang M, Hurtado-Ziola N, Varki A (2012) Production platforms for biotherapeutic glycoproteins. Occurrence, impact, and challenges of non-human sialylation. Biotechnol Genet Eng 28:147–176CrossRefGoogle Scholar
  14. Grainger RK, James DC (2013) CHO cell line specific prediction and control of recombinant monoclonal antibody N-glycosylation. Biotechnol Bioeng 110:2970–2983. doi: 10.1002/bit.24959 CrossRefGoogle Scholar
  15. Gramer MJ, Goochee CF (1993) Glycosidase activities in Chinese hamster ovary cell lysate and cell culture supernatant. Biotechnol Prog 9:366–373CrossRefGoogle Scholar
  16. Gramer MJ et al (2011) Modulation of antibody galactosylation through feeding of uridine, manganese chloride, and galactose. Biotechnol Bioeng 108:1591–1602. doi: 10.1002/bit.23075 CrossRefGoogle Scholar
  17. Gu X, Wang DIC (1998) Improvement of interferon-γ sialylation in Chinese hamster ovary cell culture by feeding of N-acetylmannosamine. Biotechnol Bioeng 58:642–648CrossRefGoogle Scholar
  18. Gu X, Harmon BJ, Wang DI (1997a) Site-and branch-specific sialylation of recombinant human interferon-g in Chinese hamster ovary cell culture. Biotechnol Bioeng 55:390–398CrossRefGoogle Scholar
  19. Gu X, Xie L, Harmon BJ, Wang DI (1997b) Influence of Primatone RL supplementation on sialylation of recombinant human interferon-gamma produced by Chinese hamster ovary cell culture using serum-free media. Biotechnol Bioeng 56:353–360CrossRefGoogle Scholar
  20. Harazono A et al (2011) A comparative study of monosaccharide composition analysis as a carbohydrate test for biopharmaceuticals. Biologicals 39:171–180CrossRefGoogle Scholar
  21. Hills AE, Patel A, Boyd P, James DC (2001) Metabolic control of recombinant monoclonal antibody N-glycosylation in GS-NS0 cells. Biotechnol Bioeng 75:239–251CrossRefGoogle Scholar
  22. Hossler P, Khattak SF, Li ZJ (2009) Optimal and consistent protein glycosylation in mammalian cell culture. Glycobiology 19:936–949CrossRefGoogle Scholar
  23. Jedrzejewski PMJ, del Val IJ, Polizzi KM, Kontoravdi C (2013) Applying quality by design to glycoprotein therapeutics: experimental and computational efforts of process control. Pharm Bioprocess 1:51–69CrossRefGoogle Scholar
  24. Jenkins N, Castro P, Menon S, Ison A, Bull A (1994) Effect of lipid supplements on the production and glycosylation of recombinant interferon-gamma expressed in CHO cells. Cytotechnology 15:209–215CrossRefGoogle Scholar
  25. Jing Y, Qian Y, Li ZJ (2010) Sialylation enhancement of CTLA4-Ig fusion protein in Chinese hamster ovary cells by dexamethasone. Biotechnol Bioeng 107:488–496CrossRefGoogle Scholar
  26. Kornfeld R, Kornfeld S (1985) Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem 54:631–664CrossRefGoogle Scholar
  27. Liu L, Gomathinayagam S, Hamuro L, Prueksaritanont T, Wang W, Stadheim TA, Hamilton SR (2013) The impact of glycosylation on the pharmacokinetics of a TNFR2: Fc fusion protein expressed in Glycoengineered Pichia Pastoris. Pharm Res 30:803–812CrossRefGoogle Scholar
  28. Malykh YN, Shaw L, Schauer R (1998) The role of CMP-N-acetylneuraminic acid hydroxylase in determining the level of N-glycolylneuraminic acid in porcine tissues. Glycoconj J 15:885–893CrossRefGoogle Scholar
  29. Maszczak-Seneczko D, Olczak T, Jakimowicz P, Olczak M (2011) Overexpression of UDP-GlcNAc transporter partially corrects galactosylation defect caused by UDP-Gal transporter mutation. FEBS Lett 585:3090–3094CrossRefGoogle Scholar
  30. Rasmussen B, Davis R, Thomas J, Reddy P (1998) Isolation, characterization and recombinant protein expression in Veggie-CHO: a serum-free CHO host cell line. Cytotechnology 28:31–42CrossRefGoogle Scholar
  31. Rathore AS (2009) Roadmap for implementation of quality by design (QbD) for biotechnology products. Trends Biotechnol 27:546–553CrossRefGoogle Scholar
  32. Restelli V, Wang MD, Huzel N, Ethier M, Perreault H, Butler M (2006) The effect of dissolved oxygen on the production and the glycosylation profile of recombinant human erythropoietin produced from CHO cells. Biotechnol Bioeng 94:481–494CrossRefGoogle Scholar
  33. Rouiller Y, Perilleux A, Marsaut M, Stettler M, Vesin MN, Broly H (2012) Effect of hydrocortisone on the production and glycosylation of an Fc-fusion protein in CHO cell cultures. Biotechnol Prog 28:803–813CrossRefGoogle Scholar
  34. Royle L et al (2008) HPLC-based analysis of serum N-glycans on a 96-well plate platform with dedicated database software. Anal Biochem 376:1–12CrossRefGoogle Scholar
  35. Sajan E et al (2010) The effect of bioreactor pH and temperature on protein glycosylation in perfusion cultures of mammalian cells. In: Noll T (ed) Cells and culture, vol 4., ESACT proceedingsSpringer, Netherlands, pp 785–788CrossRefGoogle Scholar
  36. Sethuraman N, Stadheim TA (2006) Challenges in therapeutic glycoprotein production. Curr Opin Biotech 17:341–346CrossRefGoogle Scholar
  37. Svennerholm L (1957) Quantitive estimation of sialic acids: II. A colorimetric resorcinol-hydrochloric acid method. BBA-Gen Subjects 24:604–611Google Scholar
  38. Weiss P, Ashwell G (1989) The asialoglycoprotein receptor: properties and modulation by ligand. Prog Clin Biol Res 300:169–184Google Scholar
  39. Wong NS, Wati L, Nissom PM, Feng HT, Lee MM, Yap MG (2010) An investigation of intracellular glycosylation activities in CHO cells: effects of nucleotide sugar precursor feeding. Biotechnol Bioeng 107:321–336CrossRefGoogle Scholar
  40. Wurm FM (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22:1393–1398CrossRefGoogle Scholar
  41. Yoon SK, Song JY, Lee GM (2003) Effect of low culture temperature on specific productivity, transcription level, and heterogeneity of erythropoietin in Chinese hamster ovary cells. Biotechnol Bioeng 82:289–298CrossRefGoogle Scholar
  42. Zhang M, Koskie K, Ross JS, Kayser KJ, Caple MV (2010) Enhancing glycoprotein sialylation by targeted gene silencing in mammalian cells. Biotechnol Bioeng 105:1094–1105Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Jintao Liu
    • 1
  • Jie Wang
    • 1
  • Li Fan
    • 1
  • Xinning Chen
    • 1
  • Dongdong Hu
    • 1
  • Xiancun Deng
    • 2
  • H. Fai Poon
    • 2
  • Haibin Wang
    • 2
  • Xuping Liu
    • 1
    Email author
  • Wen-Song Tan
    • 1
    Email author
  1. 1.State Key Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiChina
  2. 2.Zhejiang Hisun Pharmaceutical (Hangzhou) Co. LtdFuyang, HangzhouChina

Personalised recommendations