Skip to main content

Inhibitory effect of eugenol on aflatoxin B1 production in Aspergillus parasiticus by downregulating the expression of major genes in the toxin biosynthetic pathway

Abstract

Aflatoxin contamination of grains and agro-products is a serious food safety issue and a significant economic concern worldwide. In the present study, the effects of eugenol on Aspergillus parasiticus growth and aflatoxin production were studied in relation to the expression of some essential genes involved in aflatoxin biosynthetic pathway. The fungus was cultured in presence of serial two-fold concentrations of eugenol (15.62–500 μg mL−1) for 3 days at 28 °C. Mycelia dry weight was determined as an index of fungal growth, while aflatoxin production was assessed by high performance liquid chromatography. The expression of aflatoxin biosynthetic genes including ver-1, nor-1, pksA, omtA and aflR were evaluated by real-time PCR. Eugenol strongly inhibited A. parasiticus growth in the range of 19.16–95.83 % in a dose-dependent manner. Aflatoxin B1 production was also inhibited by the compound in the range of 15.07–98.0 %. The expressions of ver-1, nor-1, pksA, omtA and aflR genes were significantly suppressed by eugenol at concentrations of 62.5 and 125 μg mL−1. These results indicate that eugenol may be considered as a good candidate to control toxigenic fungal growth and the subsequent contamination of food, feed and agricultural commodities by carcinogenic aflatoxins.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Alinezhad S, Kamalzadeh A, Shams-Ghahfarokhi M, Rezaee MB, Jaimand K, Kawachi M, Zamani Z, Tolouei R, Razzaghi-Abyaneh M (2011) Search for novel antifungals from 49 indigenous medicinal plants: Foeniculum vulgare and Platycladus orientalis as strong inhibitors of aflatoxin production by Aspergillus parasiticus. Ann Microbiol 61(3):673–681

    CAS  Article  Google Scholar 

  • Bennett I (1997) One gene to whole pathway: the Role of. Adv Appl Microbiol 45:1

    CAS  Google Scholar 

  • Bennis S, Chami F, Chami N, Bouchikhi T, Remmal A (2004) Surface alteration of Saccharomyces cerevisiae induced by thymol and eugenol. Lett Appl Microbiol 38(6):454–458

    CAS  Article  Google Scholar 

  • Bhatnagar R, Ahmad S, Mukerji K, Venkitasubramanian T (1986) Nitrogen metabolism in Aspergillus parasiticus NRRL 3240 and A. flavus NRRL 3537 in relation to aflatoxin production. J Appl Bacteriol 60(3):203–211

    CAS  Article  Google Scholar 

  • Brown D, Adams T, Keller N (1996) Aspergillus has distinct fatty acid synthases for primary and secondary metabolism. Proc Natl Acad Sci 93(25):14873–14877

    CAS  Article  Google Scholar 

  • Calvo AM, Wilson RA, Bok JW, Keller NP (2002) Relationship between secondary metabolism and fungal development. Microbiol Mol Biol Rev 66(3):447–459

    CAS  Article  Google Scholar 

  • Carrasco H, Raimondi M, Svetaz L, Liberto MD, Rodriguez MV, Espinoza L, Madrid A, Zacchino S (2012) Antifungal activity of eugenol analogues. Influence of different substituents and studies on mechanism of action. Molecules 17(1):1002–1024

    CAS  Article  Google Scholar 

  • Cheng SS, Liu JY, Chang EH, Chang ST (2008) Antifungal activity of cinnamaldehyde and eugenol congeners against wood-rot fungi. Bioresour Technol 99(11):5145–5149

    CAS  Article  Google Scholar 

  • Cross CE, Halliwell B, Borish ET, Pryor WA, Ames BN, Saul RL, Mccord JM, Harman D (1987) Oxygen radicals and human disease. Ann Intern Med 107(4):526–545

    CAS  Article  Google Scholar 

  • Darvishi E, Omidi M, Bushehri AAS, Golshani A, Smith ML (2013) The antifungal eugenol perturbs dual aromatic and branched-chain amino Acid permeases in the cytoplasmic membrane of yeast. PLoS One 8(10):e76028

    CAS  Article  Google Scholar 

  • Fujisawa S, Atsumi T, Kadoma Y, Sakagami H (2002) Antioxidant and prooxidant action of eugenol-related compounds and their cytotoxicity. Toxicology 177(1):39–54

    CAS  Article  Google Scholar 

  • Grauslund M, Didion T, Kielland-Brandt MC, Andersen HA (1995) BAP2, a gene encoding a permease for branched-chain amino acids in Saccharomyces cerevisiae. Biochim Biophys Acta (BBA) 1269(3):275–280

    Article  Google Scholar 

  • Jahanshiri Z, Shams-Ghahfarokhi M, Allameh A, Razzaghi-Abyaneh M (2012) Effect of curcumin on Aspergillus parasiticus growth and expression of major genes involved in the early and late stages of aflatoxin biosynthesis. Iran J Public Health 41(6):72

    CAS  Google Scholar 

  • Jayashree T, Subramanyam C (1999) Antiaflatoxigenic activity of eugenol is due to inhibition of lipid peroxidation. Lett Appl Microbiol 28(3):179–183

    CAS  Article  Google Scholar 

  • Jeng J, Hahn L, Lu E, Wang Y, Kuo M (1994) Eugenol triggers different pathobiological effects on human oral mucosal fibroblasts. J Dent Res 73(5):1050–1055

    CAS  Google Scholar 

  • Karapinar M (1990) Inhibitory effects of anethole and eugenol on the growth and toxin production of Aspergillus parasiticus. Int J Food Microbiol 10(3):193–199

    CAS  Article  Google Scholar 

  • Kim JH, Yu J, Mahoney N, Chan KL, Molyneux RJ, Varga J, Bhatnagar D, Cleveland TE, Nierman WC, Campbell BC (2008) Elucidation of the functional genomics of antioxidant-based inhibition of aflatoxin biosynthesis. Int J Food Microbiol 122(1):49–60

    CAS  Article  Google Scholar 

  • Markowitz K, Moynihan M, Liu M, Kim S (1992) Biologic properties of eugenol and zinc oxide-eugenol: a clinically oriented review. Oral Surg Oral Med Oral Pathol 73(6):729–737

    CAS  Article  Google Scholar 

  • Mayer Z, Bagnara A, Färber P, Geisen R (2003) Quantification of the copy number of nor-1, a gene of the aflatoxin biosynthetic pathway by real-time PCR, and its correlation to the cfu of Aspergillus flavus in foods. Int J Food Microbiol 82(2):143–151

    CAS  Article  Google Scholar 

  • Meyers DM, Obrian G, Du W, Bhatnagar D, Payne G (1998) Characterization of aflJ, a gene required for conversion of pathway intermediates to aflatoxin. Appl Environ Microbiol 64(10):3713–3717

    CAS  Google Scholar 

  • Nam H, Kim MM (2013) Eugenol with antioxidant activity inhibits MMP-9 related to metastasis in human fibrosarcoma cells. Food Chem Toxicol 55:106–112

    CAS  Article  Google Scholar 

  • Payne GA, Widstrom NW (1992) Aflatoxin in maize. Crit Rev Plant Sci 10(5):423–440

    CAS  Article  Google Scholar 

  • Payne GA, Nystrom G, Bhatnagar D, Cleveland T, Woloshuk C (1993) Cloning of the afl-2 gene involved in aflatoxin biosynthesis from Aspergillus flavus. Appl Environ Microbiol 59(1):156–162

    CAS  Google Scholar 

  • Price MS, Yu J, Nierman WC, Kim HS, Pritchard B, Jacobus CA, Bhatnagar D, Cleveland TE, Payne GA (2006) The aflatoxin pathway regulator AflR induces gene transcription inside and outside of the aflatoxin biosynthetic cluster. FEMS Microbiol Lett 255(2):275–279

    CAS  Article  Google Scholar 

  • Rasooli I, Razzaghi-Abyaneh M (2004) Inhibitory effects of thyme oils on growth and aflatoxin production by Aspergillus parasiticus. Food Control 15(6):479–483

    CAS  Article  Google Scholar 

  • Razzaghi-Abyaneh M, Shams-Ghahfarokhi M, Allameh A, Kazeroon-Shiri A, Ranjbar- Bahadori S, Mirzahoseini H, Rezaee MB (2006a) A survey on distribution of Aspergillus section Flavi in corn field soils in Iran: population patterns based on aflatoxins, cyclopiazonic acid and sclerotia production. Mycopathologia 161(3):183–192

    CAS  Article  Google Scholar 

  • Razzaghi-Abyaneh M, Shams-Ghahfarokhi M, Eslamifar A, Schmidt OJ, Gharebaghi R, Karimian M, Naseri A, Sheikhi M (2006b) Inhibitory effects of Akacid® plus on growth and aflatoxin production by Aspergillus parasiticus. Mycopathologia 161(4):245–249

    CAS  Article  Google Scholar 

  • Razzaghi-Abyaneh M, Yoshinari T, Shams-Ghahfarokhi M, Rezaee MB, Nagasawa H, Sakuda S (2007) Dillapiol and apiol as specific inhibitors of the biosynthesis of aflatoxin G in Aspergillus parasiticus. Biosci Biotechnol Biochem 71(9):2329–2332

    CAS  Article  Google Scholar 

  • Razzaghi-Abyaneh M, Shams-Ghahfarokhi M, Yoshinari T, Rezaee MB, Jaimand K, Nagasawa H, Sakuda S (2008) Inhibitory effects of Satureja hortensis L. essential oil on growth and aflatoxin production by Aspergillus parasiticus. Int J Food Microbiol 123(3):228–233

    CAS  Article  Google Scholar 

  • Razzaghi-Abyaneh M, Chang PK, Shams-Ghahfarokhi M, Rai M (2014) Global health issues of aflatoxins in food and agriculture: challenges and opportunities. Front Microbiol 5:420

    Article  Google Scholar 

  • Schiestl FP, Roubik DW (2003) Odor compound detection in male euglossine bees. J Chem Ecol 29(1):253–257

    CAS  Article  Google Scholar 

  • Sepahvand A, Shams-Ghahfarokhi M, Allameh A, Jahanshiri Z, Jamali M, Razzaghi- Abyaneh M (2011) A survey on distribution and toxigenicity of Aspergillus flavus from indoor and outdoor hospital environments. Folia Microbiol 56(6):527–534

    CAS  Article  Google Scholar 

  • Unnevehr L, Grace D (2013) Aflatoxins: finding solutions for improved food safety. Int Food Policy Res Inst 20:1–62

  • Yan PS, Song Y, Sakuno E, Nakajima H, Nakagawa H, Yabe K (2004) Cyclo (L-leucyl-L-prolyl) produced by Achromobacter xylosoxidans inhibits aflatoxin production by Aspergillus parasiticus. Appl Environ Microbiol 70(12):7466–7473

    CAS  Article  Google Scholar 

  • Yoo CB, Han KT, Cho KS, Ha J, Park HJ, Nam JH, Kil UH, Lee KT (2005) Eugenol isolated from the essential oil of Eugenia caryophyllata induces a reactive oxygen species-mediated apoptosis in HL-60 human promyelocytic leukemia cells. Cancer Lett 225(1):41–52

    CAS  Article  Google Scholar 

  • Yoshinari T, Akiyama T, Nakamura K, Kondo T, Takahashi Y, Muraoka Y, Nonomura Y, Nagasawa H, Sakuda S (2007) Dioctatin A is a strong inhibitor of aflatoxin production by Aspergillus parasiticus. Microbiology 153(8):2774–2780

    CAS  Article  Google Scholar 

  • Yu J (2012) Current understanding on aflatoxin biosynthesis and future perspective in reducing aflatoxin contamination. Toxins 4(11):1024–1057

    CAS  Article  Google Scholar 

  • Yu J, Chang PK, Ehrlich KC, Cary JW, Bhatnagar D, Cleveland TE, Payne GA, Linz JE, Woloshuk CP, Bennett JW (2004) Clustered pathway genes in aflatoxin biosynthesis. Appl Environ Microbiol 70(3):1253–1262

    CAS  Article  Google Scholar 

  • Yu J, Cleveland TE, Nierman WC, Bennett JW (2005) Aspergillus flavus genomics: gateway to human and animal health, food safety, and crop resistance to diseases. Rev Iberoam Micol 22(4):194–202

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Research Deputy of Tarbiat Modares University. The authors wish to thank Dr. Forouzandeh Moghadam, Mr. Karvandiyan and Mrs. Razeghi from Tarbiat Modares University for their helpful technical assistance and Dr. Fariborz Bahrami from Pasteur Institute of Iran for language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoomeh Shams-Ghahfarokhi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jahanshiri, Z., Shams-Ghahfarokhi, M., Allameh, A. et al. Inhibitory effect of eugenol on aflatoxin B1 production in Aspergillus parasiticus by downregulating the expression of major genes in the toxin biosynthetic pathway. World J Microbiol Biotechnol 31, 1071–1078 (2015). https://doi.org/10.1007/s11274-015-1857-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-015-1857-7

Keywords

  • Eugenol
  • Aspergillus parasiticus
  • Antifungal activity
  • Aflatoxin B1
  • Gene expression