Skip to main content
Log in

Purification and characterization of a novel plantaricin, KL-1Y, from Lactobacillus plantarum KL-1

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Three bacteriocins from Lactobacillus plantarum KL-1 were successfully purified using ammonium sulfate precipitation, cation-exchange chromatography and reverse-phase HPLC. The bacteriocin peptides KL-1X, -1Y and -1Z had molecular masses of 3053.82, 3498.16 and 3533.16 Da, respectively. All three peptides were stable at pH 2–12 and 25 °C and at high temperatures of 80 and 100 °C for 30 min and 121 °C for 15 min. However, they differed in their susceptibility to proteolytic enzymes and their inhibition spectra. KL-1Y showed broad inhibitory activities against Gram-positive and Gram-negative bacteria, including Salmonella enterica serovar Enteritidis DMST 17368, Pseudomonas aeruginosa ATCC 15442, P. aeruginosa ATCC 9027, Escherichia coli O157:H7 and E. coli ATCC 8739. KL-1X and -1Z inhibited only Gram-positive bacteria. KL-1X, KL-1Y and KL-1Z exhibited synergistic activity. The successful amino acid sequencing of KL-1Y had a hydrophobicity of approximately 30 % and no cysteine residues suggested its novelty, and it was designated “plantaricin KL-1Y”. Plantaricin KL-1Y exhibited bactericidal activity against Bacillus cereus JCM 2152T. Compared to nisin, KL-1Y displayed broad inhibitory activities of 200, 800, 1600, 800, 400 and 400 AU/mL against the growth of Bacillus coagulans JCM 2257T, B. cereus JCM 2152T, Listeria innocua ATCC 33090T, Staphylococcus aureus TISTR 118, E. coli O157:H7 and E. coli ATCC 8739, respectively, whereas nisin had similar activities against only B. coagulans JCM 2257T and B. cereus JCM 2152T. Therefore, the novel plantaricin KL-1Y is a promising antimicrobial substance for food safety uses in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderssen EL, Diep DB, Nes IF, Eijsink VGH, Nissen-Meyer J (1998) Antagonistic activity of Lactobacillus plantarum C11: two new two-peptide bacteriocins, plantaricins EF and JK, and the induction factor plantaricin A. Appl Environ Microbiol 64:2269–2272

    CAS  Google Scholar 

  • Atrih A, Rekhif N, Milliere JB, Lefebvre G (1993) Detection and characterization of a bacteriocin produced by Lactobacillus plantarum C19. Can J Microbiol 39:1173–1179. doi:10.1139/m93-178

    Article  CAS  Google Scholar 

  • Atrih A, Rekhif N, Moir A, Lebrihi A, Lefebvre G (2001) Mode of action, purification and amino acid sequence of plantaricin C19, an anti-Listeria bacteriocin produced by Lactobacillus plantarum C19. Int J Food Microbiol 68:93–104

    Article  CAS  Google Scholar 

  • Böhme K, Fernández-No IC, Barros-Velázquez J, Gallardo JM, Calo-Mata P, Cañas B (2010) Species differentiation of seafood spoilage and pathogenic Gram-negative bacteria by MALDI-TOF mass fingerprinting. J Proteome Res 9:3169–3183. doi:10.1021/pr100047q

    Article  Google Scholar 

  • Chen H, Hoover D (2003) Bacteriocins and their food applications. Compr Rev Food Sci Food Saf 2:82–100

    CAS  Google Scholar 

  • Cintas LM, Casaus P, Holo H, Hernandez PE, Nes IF, HΣvarstein LS (1998) Enterocins L50A and L50B, two novel bacteriocins from Enterococcus faecium L50, are related to staphylococcal hemolysins. J Bacteriol 180:1988–1994

    CAS  Google Scholar 

  • Cleveland J, Montville TJ, Nes IF, Chikindas ML (2001) Bacteriocins: safe, natural antimicrobials for food preservation. Int J Food Microbiol 71:1–20. doi:10.1016/S0168-1605(01)00560-8

    Article  CAS  Google Scholar 

  • Cotter PD, Hill C, Ross RP (2005) Bacteriocins: developing innate immunity for food. Nat Rev Microbiol 3:777–788. doi:10.1038/nrmicro1273

    Article  CAS  Google Scholar 

  • Daeschel MA, Andersson RE, Fleming HP (1987) Microbial ecology of fermenting plant materials. FEMS Microbiol Lett 46:357–367. doi:10.1016/0378-1097(87)90119-4

    Article  Google Scholar 

  • Dallas DC, Underwood MA, Zivkovic AM, German JB (2012) Digestion of protein in premature and term infants. J Nutr Disord Ther 2:112. doi:10.4172/2161-0509.1000112

    Article  Google Scholar 

  • De Vuyst L, Vandamme E (1994) Antimicrobial potential of lactic acid bacteria. In: De Vuyst L, Vandamme E (eds) Bacteriocins of Lactic Acid Bacteria. Springer, US, pp 91–142. doi:10.1007/978-1-4615-2668-1_3

    Chapter  Google Scholar 

  • Delves-Broughton J, Blackburn P, Evans RJ, Hugenholtz J (1996) Applications of the bacteriocin, nisin. Antonie Van Leeuwenhoek 69:193–202. doi:10.1007/BF00399424

    Article  CAS  Google Scholar 

  • Dicks LMT, Mellett FD, Hoffman LC (2004) Use of bacteriocin-producing starter cultures of Lactobacillus plantarum and Lactobacillus curvatus in production of ostrich meat salami. Meat Sci 66:703–708. doi:10.1016/j.meatsci.2003.07.002

    Article  CAS  Google Scholar 

  • Diep BD, Havarstein LS, Nissen-Meyer J, Nes FI (1994) The gene encoding plantaricin A, a bacteriocin from Lactobacillus plantarum C11, is located on the same transcription unit as an agr- like regulatory system. Appl Environ Microbiol 60:160–166

    CAS  Google Scholar 

  • Draper LA, Cotter PD, Hill C, Ross RP (2013) The two peptide lantibiotic lacticin 3147 acts synergistically with polymyxin to inhibit Gram negative bacteria. BMC Microbiol 13:212

    Article  Google Scholar 

  • Ehrmann MA, Remiger A, Eijsink VG, Vogel RF (2000) A gene cluster encoding plantaricin 1.25 and other bacteriocin-like peptides in Lactobacillus plantarum TMW1.25. Biochim Biophys Acta 1490:355–361

    Article  CAS  Google Scholar 

  • Elizaquível P, Chenoll E, Aznar R (2008) A TaqMan-based real-time PCR assay for the specific detection and quantification of Leuconostoc mesenteroides in meat products FEMS. Microbiol Lett 278:62–71. doi:10.1111/j.1574-6968.2007.00974.x

    Article  Google Scholar 

  • Enan G, El-Essawy AA, Uyttendaele M, Debevere J (1996) Antibacterial activity of Lactobacillus plantarum UG1 isolated from dry sausage: characterization, production and bactericidal action of plantaricin UG1. Int J Food Microbiol 30:189–215. doi:10.1016/0168-1605(96)00947-6

    Article  CAS  Google Scholar 

  • Ennahar S, Sashihara T, Sonomoto K, Ishizaki A (2000) Class IIa bacteriocins: biosynthesis, structure and activity. FEMS Microbiol Rev 24:85–106. doi:10.1111/j.1574-6976.2000.tb00534.x

    Article  CAS  Google Scholar 

  • Ennahar S, Asou Y, Zendo T, Sonomoto K, Ishizaki A (2001) Biochemical and genetic evidence for production of enterocins A and B by Enterococcus faecium WHE 81. Int J Food Microbiol 70:291–301. doi:10.1016/S0168-1605(01)00565-7

    Article  CAS  Google Scholar 

  • Fricourt BV, Barefoot SF, Testin RF, Hayasaka SS (1994) Detection and activity of plantaricin F an antibacterial substance from Lactobacillus plantarum BF001 isolated from processed channel catfish. J Food Prot 57:698–702

    CAS  Google Scholar 

  • Gong HS, Meng XC, Wang H (2010) Plantaricin MG active against Gram-negative bacteria produced by Lactobacillus plantarum KLDS1.0391 isolated from “Jiaoke”, a traditional fermented cream from China. Food Control 21:89–96. doi:10.1016/j.foodcont.2009.04.005

    Article  CAS  Google Scholar 

  • González B, Arca P, Mayo B, Suárez JE (1994) Detection, purification, and partial characterization of plantaricin C, a bacteriocin produced by a Lactobacillus plantarum strain of dairy origin. Appl Environ Microbiol 60:2158–2163

    Google Scholar 

  • Hata T, Tanaka R, Ohmomo S (2010) Isolation and characterization of plantaricin ASM1: a new bacteriocin produced by Lactobacillus plantarum A-1. Int J Food Microbiol 137:94–99

    Article  CAS  Google Scholar 

  • Holo H, Jeknic Z, Daeschel M, Stevanovic S, Nes IF (2001) Plantaricin W from Lactobacillus plantarum belongs to a new family of two-peptide lantibiotics. Microbiology 147:643–651

    CAS  Google Scholar 

  • Jiménez-Díaz R, Rios-Sánchez RM, Desmazeaud M, Ruiz-Barba JL, Piard J-C (1993) Plantaricins S and T, two new bacteriocins produced by Lactobacillus plantarum LPCO10 isolated from a green olive fermentation. Appl Environ Microbiol 59:1416–1424

    Google Scholar 

  • Kelly WJ, Asmundson RV, Huang CM (1996) Characterization of plantaricin KW30, a bacteriocin produced by Lactobacillus plantarum. J Appl Bacteriol 81:657–662. doi:10.1111/j.1365-2672.1996.tb03561.x

    CAS  Google Scholar 

  • Kimura H, Matsusaki H, Sashihara T, Sonomoto K, Ishizaki A (1998) Purification and partial identification of bacteriocin ISK-1, a new lantibiotic produced by Pediococcus sp. ISK-1. Biosci Biotechnol Biochem 62:2341–2345. doi:10.1271/bbb.62.2341

    Article  CAS  Google Scholar 

  • Leal-Sánchez MV, Ruiz-Barba JL, Sánchez AH, Rejano L, Jiménez-Díaz R, Garrido A (2003) Fermentation profile and optimization of green olive fermentation using Lactobacillus plantarum LPCO10 as a starter culture. Food Microbiol 20:421–430. doi:10.1016/S0740-0020(02)00147-8

    Article  Google Scholar 

  • Maldonado A, Ruiz-Barba JL, Jimenez-Diaz R (2003) Purification and genetic characterization of plantaricin NC8, a novel coculture-inducible two-peptide bacteriocin from Lactobacillus plantarum NC8. Appl Environ Microbiol 69:383–389

    Article  CAS  Google Scholar 

  • Masuda Y, Zendo T, Sawa N, Perez RH, Nakayama J, Sonomoto K (2012) Characterization and identification of weissellicin Y and weissellicin M, novel bacteriocins produced by Weissella hellenica QU 13. J Appl Microbiol 112:99–108. doi:10.1111/j.1365-2672.2011.05180.x

    Article  CAS  Google Scholar 

  • Müller DM, Carrasco MS, Simonetta AC, Beltramini LM, Tonarelli GG (2007) A synthetic analog of plantaricin 149 inhibiting food-borne pathogenic bacteria:evidence for α-helical conformation involved in bacteria–membrane interaction. J Pept Sci 13:171–178. doi:10.1002/psc.828

    Article  Google Scholar 

  • Nissen-Meyer J, Larsen AG, Sletten K, Daeschel M, Nes IF (1993) Purification and characterization of plantaricin A, a Lactobacillus plantarum bacteriocin whose activity depends on the action of two peptides. J Gen Microbiol 139:1973–1978. doi:10.1099/00221287-139-9-1973

    Article  CAS  Google Scholar 

  • Omar NB, Abriouel H, Lucas R, Martínez-Cañamero M, Guyot J-P, Gálvez A (2006) Isolation of bacteriocinogenic Lactobacillus plantarum strains from ben saalga, a traditional fermented gruel from Burkina Faso. Int J Food Microbiol 112:44–50. doi:10.1016/j.ijfoodmicro.2006.06.014

    Article  Google Scholar 

  • Parente E, Brienza C, Moles M, Ricciardi A (1995) A comparison of methods for the measurement of bacteriocin activity. J Microbiol Methods 22:95–108. doi:10.1016/0167-7012(94)00068-I

    Article  Google Scholar 

  • Perez RH, Zendo T, Sonomoto K (2014) Novel bacteriocins from lactic acid bacteria (LAB): various structures and applications. Microb Cell Fact 13:S3

    Article  Google Scholar 

  • Rekhif N, Atrih A, Lefebvre G (1994) Characterization and partial purification of plantaricin LC74, a bacteriocin produced by Lactobacillus plantarum LC74. Biotechnol Lett 16:771–776. doi:10.1007/BF00133952

    Article  CAS  Google Scholar 

  • Rekhif N, Atrih A, Lefebvrexy G (1995) Activity of plantaricin SA6, a bacteriocin produced by Lactobacillus plantarum SA6 isolated from fermented sausage. J Appl Bacteriol 78:349–358. doi:10.1111/j.1365-2672.1995.tb03417.x

    Article  CAS  Google Scholar 

  • Sashihara T, Kimura H, Higuchi T, Adachi A, Matsusaki H, Sonomoto K, Ishizaki A (2000) A novel lantibiotic, nukacin ISK-1, of Staphylococcus warneri ISK-1: cloning of the structural gene and identification of the structure. Biosci Biotechnol Biochem 64:2420–2428

    Article  CAS  Google Scholar 

  • Sawa N, Zendo T, Kiyofuji J, Fujita K, Himeno K, Nakayama J, Sonomoto K (2009) Identification and characterization of lactocyclicin Q, a novel cyclic bacteriocin produced by Lactococcus sp. strain QU 12. Appl Environ Microbiol 75:1552–1558. doi:10.1128/aem.02299-08

    Article  CAS  Google Scholar 

  • Sawa N, Okamura K, Zendo T, Himeno K, Nakayama J, Sonomoto K (2010) Identification and characterization of novel multiple bacteriocins produced by Leuconostoc pseudomesenteroides QU 15. J Appl Microbiol 109:282–291. doi:10.1111/j.1365-2672.2009.04653.x

    CAS  Google Scholar 

  • Sawa N, Koga S, Okamura K, Ishibashi N, Zendo T, Sonomoto K (2013) Identification and characterization of novel multiple bacteriocins produced by Lactobacillus sakei D98. J Appl Microbiol 115:61–69. doi:10.1111/jam.12226

    Article  CAS  Google Scholar 

  • Schillinger U, Lücke FK (1989) Antibacterial activity of Lactobacillus sake isolated from meat. Appl Environ Microbiol 55:1901–1906

    CAS  Google Scholar 

  • Schirmer BC, Heir E, Langsrud S (2009) Characterization of the bacterial spoilage flora in marinated pork products. J Appl Microbiol 106:2106–2116. doi:10.1111/j.1365-2672.2009.04183.x

    Article  CAS  Google Scholar 

  • Tagg J, McGiven A (1971) Assay system for bacteriocins. Appl Microbiol 21:943

    CAS  Google Scholar 

  • Todorov SD, Vaz-Velho M, Gibbs P (2004) Comparison of two methods for purification of plantaricin ST31, a bacteriocin produced by Lactobacillus plantarum ST31. Braz J Microbiol 35:157–160

    Article  CAS  Google Scholar 

  • Todorov SD, Nyati H, Meincken M, Dicks LMT (2007) Partial characterization of bacteriocin AMA-K, produced by Lactobacillus plantarum AMA-K isolated from naturally fermented milk from Zimbabwe. Food Control 18:656–664. doi:10.1016/j.foodcont.2006.03.003

    Article  CAS  Google Scholar 

  • van Reenen CA, Dicks LM, Chikindas ML (1998) Isolation, purification and partial characterization of plantaricin 423, a bacteriocin produced by Lactobacillus plantarum. J Appl Microbiol 84:1131–1137

    Article  Google Scholar 

  • Wilaipun P, Zendo T, Sangjindavong M, Nitisinprasert S, Leelawatcharamas V, Nakayama J, Sonomoto K (2004) The two-synergistic peptide bacteriocin produced by Enterococcus faecium NKR-5-3 isolated from Thai fermented fish (Pla-ra). Sci Asia 30:115–122

    Article  CAS  Google Scholar 

  • Zendo T, Koga S, Shigeri Y, Nakayama J, Sonomoto K (2006) Lactococcin Q, a novel two-peptide bacteriocin produced by Lactococcus lactis QU 4. Appl Environ Microbiol 72:3383–3389. doi:10.1128/aem.72.5.3383-3389.2006

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We express our gratitude to The Royal Golden Jubilee Ph.D. program for a Ph.D. scholarship. Our thanks also go to S&P Syndicate Public Company Limited and the Laboratory of Microbial Technology, Division of Microbial Science and Technology, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka, Japan.

Conflict of Interests

We have no conflict of interest.

Funding

This study was funded by The Royal Golden Jubilee Ph.D. program, Thailand.

Ethical approval

Not required.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunee Nitisinprasert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rumjuankiat, K., Perez, R.H., Pilasombut, K. et al. Purification and characterization of a novel plantaricin, KL-1Y, from Lactobacillus plantarum KL-1. World J Microbiol Biotechnol 31, 983–994 (2015). https://doi.org/10.1007/s11274-015-1851-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-015-1851-0

Keywords

Navigation