Skip to main content

Advertisement

Log in

Extracellular endoglucanase activity from Paenibacillus polymyxa BEb-40: production, optimization and enzymatic characterization

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Endoglucanase activity produced by Paenibacillus polymyxa BEb-40 was studied. In submerged culture with minimal medium supplemented with carboxymethylcellulose (CMC), this microorganism produced up to 0.37 U/mL endoglucanase activity with high specific activity (14.3 U/mgtotal protein). Detection of endoglucanase activity through zymography revealed at least 14 isoenzymes with molecular weights between 38 and 220 kDa. This high variety of secreted endoglucanases has not been described previously in Paenibacillus genus. The optimum conditions, determined by response surface methodology, were 48 °C and pH 3.4, which allowed an increase of 33.7 % in the relative endoglucanase activity obtained with respect to the standard conditions. Nevertheless, high levels of hydrolysis of at least 70 % of the maximum activity could be obtained at wide ranges of pH (2–9) and temperature (40–60 °C). Under optimal conditions, high levels of CMC hydrolysis were reached, of about 40 %, after only 12 h of reaction with substrate/total protein ratios between 19 and 76. Kinetic analysis revealed that endoglucanase activity followed a mixed inhibition model (K m = 8.4 mM, K ic = 0.03 mM, K iu = 0.35 mM, V max = 33.3 U/mgtotal protein). These results allow to consider P. polymyxa BEb-40 as a promising microorganism for the production of endoglucanases, with possibilities of application in the breakdown of lignocellulosic biomass. The high specific activity at wide ranges of pH and temperature can allow its use in a wide variety of processes, under both acidic and alkaline conditions, as well as in mesophilic and thermophilic temperatures, further reducing the amount of enzymes used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adlakha N, Rajagopal R, Kumar S, Reddy VS, Yazdani SS (2011) Synthesis and characterization of chimeric proteins based on cellulase and xylanase from an insect gut bacterium. Appl Environ Microbiol 77(14):4859–4866. doi:10.1128/AEM.02808-10

    Article  CAS  Google Scholar 

  • Adlakha N, Sawant S, Anil A, Lali A, Yazdani SS (2012) Specific fusion of β-1,4-endoglucanase and β-1,4-glucosidase enhances cellulolytic activity and helps in channeling of intermediates. Appl Environ Microbiol 78(20):7447–7454. doi:10.1128/AEM.01386-12

    Article  CAS  Google Scholar 

  • Afzal S, Saleem M, Yasmin R, Naz M, Imran M (2009) Pre and post cloning characterization of a β-1,4-endoglucanase from Bacillus sp. Mol Biol Rep 37(4):1717–1723. doi:10.1007/s11033-009-9592-5

    Article  Google Scholar 

  • Asha BM, Revathi M, Yadav A, Sakthivel N (2012) Purification and characterization of a thermophilic cellulase from a novel cellulolytic strain, Paenibacillus barcinonensis. J Microbiol Biotechnol 22(11):1501–1509. doi:10.4014/jmb.1202.02013

    Article  CAS  Google Scholar 

  • Baş D, Boyacı İH (2007) Modeling and optimization I: usability of response surface methodology. J Food Eng 78(3):836–845. doi:10.1016/j.jfoodeng.2005.11.024

    Article  Google Scholar 

  • Banerjee G, Scott-Craig JS, Walton JD (2010) Improving enzymes for biomass conversion: a basic research perspective. Bioenergy Res 3(1):82–92. doi:10.1007/s12155-009-9067-5

    Article  Google Scholar 

  • Bezerra RMF, Dias AA (2004) Discrimination among eight modified Michaelis–Menten kinetics models of cellulose hydrolysis with a large range of substrate/enzyme ratios: inhibition by cellobiose. Appl Biochem Biotechnol 112(3):173–184. doi:10.1385/ABAB:112:3:173

    Article  CAS  Google Scholar 

  • Bezerra RMF, Dias AA (2007) Utilization of integrated Michaelis–Menten equation to determine kinetic constants. Biochem Mol Biol Educ 35(2):145–150. doi:10.1002/bmb.32

    Article  CAS  Google Scholar 

  • Box GEP, Hunter JS, Hunter WG (2005) Statistics for experimenters: design, innovation, and discovery, 2nd edn. Wiley, Hoboken, NJ

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254. doi:10.1385/0-89603-268-X:9

    Article  CAS  Google Scholar 

  • Castro AM, Pedro KCNR, Cruz JC, Ferreira MC, Leite SGF, Pereira N Jr (2010) Trichoderma harzianum IOC-4038: a promising strain for the production of a cellulolytic complex with significant β-glucosidase activity from sugarcane bagasse cellulignin. Appl Biochem Biotechnol 162(7):2111–2122. doi:10.1007/s12010-010-8986-0

    Article  Google Scholar 

  • Chiriac AI, Cadena EM, Vidal T, Torres AL, Diaz P, Pastor FIJ (2010) Engineering a family 9 processive endoglucanase from Paenibacillus barcinonensis displaying a novel architecture. Appl Microbiol Biotechnol 86(4):1125–1134. doi:10.1007/s00253-009-2350-8

    Article  CAS  Google Scholar 

  • Davies MT (1959) A universal buffer solution for use in ultra-violet spectrophotometry. Analyst 84(997):248–251. doi:10.1039/AN9598400248

    Article  CAS  Google Scholar 

  • Elzhov TV, Mullen KM, Spiess AN, Bolker B (2013) minpack.lm: R interface to the Levenberg–Marquardt nonlinear least-squares algorithm found in MINPACK, plus support for bounds. http://CRAN.R-project.org/package=minpack.lm

  • Farinas CS, Loyo MM, Baraldo A, Tardioli PW, Neto VB, Couri S (2010) Finding stable cellulase and xylanase: evaluation of the synergistic effect of pH and temperature. New Biotechnol 27(6):810–815. doi:10.1016/j.nbt.2010.10.001

    Article  CAS  Google Scholar 

  • Ghose TK (1987) Measurement of cellulase activities. Pure Appl Chem 59(2):257–268. doi:10.1351/pac198759020257

    Article  CAS  Google Scholar 

  • Ko CH, Chen WL, Tsai CH, Jane WN, Liu CC, Tu J (2007) Paenibacillus campinasensis BL11: a wood material-utilizing bacterial strain isolated from black liquor. Bioresour Technol 98(14):2727–2733. doi:10.1016/j.biortech.2006.09.034

    Article  CAS  Google Scholar 

  • Ko CH, Tsai CH, Lin PH, Chang KC, Tu J, Wang YN, Yang CY (2010) Characterization and pulp refining activity of a Paenibacillus campinasensis cellulase expressed in Escherichia coli. Bioresour Technol 101(20):7882–7888. doi:10.1016/j.biortech.2010.05.043

    Article  CAS  Google Scholar 

  • Kumar D, Ashfaque M, Muthukumar M, Singh M, Garg N (2012) Production and characterization of carboxymethyl cellulase from Paenibacillus polymyxa using mango peel as substrate. J Environ Biol 33(1):81–84. http://jeb.co.in/journal_issues/201201_jan12/paper_13.pdf

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–175

    Google Scholar 

  • Lee YJ, Kim BK, Lee BH, Jo KI, Lee NK, Chung CH, Lee YC, Lee JW (2008) Purification and characterization of cellulase produced by Bacillus amyoliquefaciens DL-3 utilizing rice hull. Bioresour Technol 99(2):378–386. doi:10.1016/j.biortech.2006.12.013

    Article  CAS  Google Scholar 

  • Lenth RV (2009) Response-surface methods in R, using rsm. J Stat Softw 32(7):1–17. http://www.jstatsoft.org/v32/i07/

  • Li W, Zhang WW, Yang MM, Chen YL (2008) Cloning of the thermostable cellulase gene from newly isolated Bacillus subtilis and its expression in Escherichia coli. Mol Biotechnol 40(2):195–201. doi:10.1007/s12033-008-9079-y

    Article  CAS  Google Scholar 

  • Lockington RA, Rodbourn L, Barnett S, Carter CJ, Kelly JM (2002) Regulation by carbon and nitrogen sources of a family of cellulases in Aspergillus nidulans. Fungal Genet Biol 37(2):190–196. doi:10.1016/S1087-1845(02)00504-2

    Article  CAS  Google Scholar 

  • Maki M, Leung KT, Qin W (2009) The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass. Int J Biol Sci 5(5):500–516. doi:10.7150/ijbs.5.500

    Article  CAS  Google Scholar 

  • Manchenko GP (2002) Handbook of detection of enzymes on electrophoretic gels, 2nd edn. CRC Press LLC, Boca Raton. http://books.google.com.mx/books?id=bBkTz04RCmQC

  • Mannervik B (1982) Regression analysis, experimental error, and statistical criteria in the design and analysis of experiments for discrimination between rival kinetic models. In: Purich DL (ed) Enzyme kinetics and mechanism: part C: intermediates, stereochemistry, and rate studies: methods in enzymology, vol 87, Academic Press, New York, pp 370–390. doi:10.1016/S0076-6879(82)87023-7

  • Martínez A, Ramírez OT, Valle A (1997) Improvement of culture conditions to overproduce β-galactosidase from Escherichia coli in Bacillus subtilis. Appl Microbiol Biotechnol 47(1):40–45. doi:10.1007/s002530050885

    Article  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31(3):426–428. doi:10.1021/ac60147a030

    Article  CAS  Google Scholar 

  • Ogawa A, Suzumatsu A, Takizawa S, Kubota H, Sawada K, Hakamada Y, Kawai S, Kobayashi T, Ito S (2007) Endoglucanases from Paenibacillus spp. form a new clan in glycoside hydrolase family 5. J Biotechnol 129(3):406–414. doi:10.1016/j.jbiotec.2007.01.020

    Article  CAS  Google Scholar 

  • Pandey S, Singh S, Yadav AN, Nain L, Saxena AK (2013) Phylogenetic diversity and characterization of novel and efficient cellulase producing bacterial isolates from various extreme environments. Biosci Biotechnol Biochem 77(7):1474–1480. doi:10.1271/bbb.130121

    Article  CAS  Google Scholar 

  • Park IH, Chang J, Lee YS, Fang SJ, Choi YL (2012) Gene cloning of endoglucanase Cel5A from cellulose-degrading Paenibacillus xylanilyticus KJ-03 and purification and characterization of the recombinant enzyme. Protein J 31(3):238–245. doi:10.1007/s10930-012-9396-7

    Article  CAS  Google Scholar 

  • Pason P, Kyu KL, Ratanakhanokchai K (2006) Paenibacillus curdlanolyticus strain B-6 xylanolytic-cellulolytic enzyme system that degrades insoluble polysaccharides. Appl Environ Microbiol 72(4):2483–2490. doi:10.1128/AEM.72.4.2483-2490.2006

    Article  CAS  Google Scholar 

  • R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/

  • Rojas-Rejón OA, Poggi-Varaldo HM, Ramos-Valdivia AC, Martínez-Jiménez A, Cristiani-Urbina E, de la Torre Martínez M, Ponce-Noyola T (2011) Production of cellulases and xylanases under catabolic repression conditions from mutant PR-22 of Cellulomonas flavigena. J Ind Microbiol Biotechnol 38(1):257–264. doi:10.1007/s10295-010-0821-7

    Article  Google Scholar 

  • Singhania RR, Sukumaran RK, Patel AK, Larroche C, Pandey A (2010) Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme Microb Technol 46(7):541–549. doi:10.1016/j.enzmictec.2010.03.010

    Article  CAS  Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83(1):1–11. doi:10.1016/S0960-8524(01)00212-7

    Article  CAS  Google Scholar 

  • Suwannarangsee S, Bunterngsook B, Arnthong J, Paemanee A, Thamchaipenet A, Eurwilaichitr L, Laosiripojana N, Champreda V (2012) Optimisation of synergistic biomass-degrading enzyme systems for efficient rice straw hydrolysis using an experimental mixture design. Bioresour Technol 119:252–261. doi:10.1016/j.biortech.2012.05.098

    Article  CAS  Google Scholar 

  • Taylor LE II, Henrissat B, Coutinho PM, Ekborg NA, Hutcheson SW, Weiner RM (2006) Complete cellulase system in the marine bacterium Saccharophagus degradans strain 2–40. J Bacteriol 188(11):3849–3861. doi:10.1128/JB.01348-05

    Article  CAS  Google Scholar 

  • Van Dyk JS, Sakka M, Sakka K, Pletschke BI (2009) The cellulolytic and hemi-cellulolytic system of Bacillus licheniformis SVD1 and the evidence for production of a large multi-enzyme complex. Enzyme Microb Technol 45(5):372–378. doi:10.1016/j.enzmictec.2009.06.016

    Article  Google Scholar 

  • Wang CM, Shyu CL, Ho SP, Chiou SH (2008) Characterization of a novel thermophilic, cellulose-degrading bacterium Paenibacillus sp. strain B39. Lett Appl Microbiol 47(1):46–53. doi:10.1111/j.1472-765X.2008.02385.x

    Article  CAS  Google Scholar 

  • Watson BJ, Zhang H, Longmire AG, Moon YH, Hutcheson SW (2009) Processive endoglucanases mediate degradation of cellulose by Saccharophagus degradans. J Bacteriol 191(18):5697–5705. doi:10.1128/JB.00481-09

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Mexican Council of Science and Technology (CONACyT). Argel Gastelum-Arellanez held a scholarship from CONACyT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor Olalde-Portugal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gastelum-Arellanez, A., Paredes-López, O. & Olalde-Portugal, V. Extracellular endoglucanase activity from Paenibacillus polymyxa BEb-40: production, optimization and enzymatic characterization. World J Microbiol Biotechnol 30, 2953–2965 (2014). https://doi.org/10.1007/s11274-014-1723-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-014-1723-z

Keywords

Navigation