Skip to main content
Log in

Characterization of pncA mutations in pyrazinamide-resistant Mycobacterium tuberculosis isolates from Korea and analysis of the correlation between the mutations and pyrazinamidase activity

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

To investigate the effect of natural pyrazinamidase (PncA) mutations on protein function, we analyzed expression and PncA activity of eight pncA point mutants identified in nineteen pyrazinamide-resistant Mycobacterium tuberculosis clinical isolates. Among them, two mutants (Y99D and T135P) showed high expression level and solubility comparable to those of the wild-type PncA protein, two (K48E and G97D) displayed low expression level and solubility, and four (C14R, H51P, W68S, and A146V) were insoluble. Interestingly, when possible structural effects of these mutations were predicted by the CUPSAT program based on the proposed three-dimensional structure of M. tuberculosis PncA, only two highly soluble mutant proteins (Y99D and T135P) were predicted to be stabilizing and have favorable torsion angles. However, the others exhibiting either low solubility or precipitation were foreseen to be destabilizing and/or have unfavorable torsion angles, suggesting that the alterations could interfere with proper protein folding, thereby decreasing or depleting protein solubility. A PncA activity assay demonstrated that two mutants (G97D and T135P) showed virtually no activity, but two other mutants (K48E and Y99D) exhibited wild-type activity, indicating that the PncA residues (Cys14, His51, Trp68, Gly97, Thr135, and Ala146) may be important for PncA activity and/or proper protein folding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Barco P, Cardoso RF, Hirata RD, Leite CQ, Pandolfi JR, Sato DN, Shikama ML, de Melo FF, Mamizuka EM, Campanerut PA, Hirata MH (2006) pncA mutations in pyrazinamide-resistant Mycobacterium tuberculosis clinical isolates from the southeast region of Brazil. J Antimicrob Chemother 58:930–935

    Article  CAS  Google Scholar 

  • Cheng SJ, Thibert L, Sanchez T, Heifets L, Zhang Y (2000) pncA mutations as a major mechanism of pyrazinamide resistance in Mycobacterium tuberculosis: spread of a monoresistant strain in Quebec, Canada. Antimicrob Agents Chemother 44:528–532

    Article  CAS  Google Scholar 

  • Du X, Wang W, Kim R, Yakota H, Nguyen H, Kim SH (2001) Crystal structure and mechanism of catalysis of a pyrazinamidase from Pyrococcus horikoshii. Biochemistry 40:14166–14172

    Article  CAS  Google Scholar 

  • Escalante P, Ramaswamy S, Sanabria H, Soini H, Pan X, Valiente-Castillo O, Musser JM (1998) Genotypic characterization of drug-resistant Mycobacterium tuberculosis isolates from Peru. Tuber Lung Dis 79:111–118

    Article  CAS  Google Scholar 

  • Fyfe PK, Rao VA, Zemla A, Cameron S, Hunter WN (2009) Specificity and mechanism of Acinetobacter baumanii nicotinamidase: implications for activation of the front-line tuberculosis drug pyrazinamide. Angew Chem Int Ed Engl 48:9176–9179

    Article  CAS  Google Scholar 

  • Goldstone RM, Moreland NJ, Bashiri G, Baker EN, Shaun Lott J (2008) A new Gateway vector and expression protocol for fast and efficient recombinant protein expression in Mycobacterium smegmatis. Protein Expr Purif 57:81–87

    Article  CAS  Google Scholar 

  • Heifets L, Lindholm-Levy P (1992) Pyrazinamide sterilizing activity in vitro against semidormant Mycobacterium tuberculosis bacterial populations. Am Rev Respir Dis 145:1223–1225

    Article  CAS  Google Scholar 

  • Hirano K, Takahashi M, Kazumi Y, Fukasawa Y, Abe C (1997) Mutation in pncA is a major mechanism of pyrazinamide resistance in Mycobacterium tuberculosis. Tuber Lung Dis 78:117–122

    Article  CAS  Google Scholar 

  • Huang TS, Lee SS, Tu HZ, Huang WK, Chen YS, Huang CK, Wann SR, Lin HH, Liu YC (2003) Correlation between pyrazinamide activity and pncA mutations in Mycobacterium tuberculosis isolates in Taiwan. Antimicrob Agents Chemother 47:3672–3673

    Article  CAS  Google Scholar 

  • Jonmalung J, Prammananan T, Leechawengwongs M, Chaiprasert A (2010) Surveillance of pyrazinamide susceptibility among multidrug-resistant Mycobacterium tuberculosis isolates from Siriraj Hospital, Thailand. BMC Microbiol 10:223

    Article  Google Scholar 

  • Lee KW, Lee JM, Jung KS (2001) Characterization of pncA mutations of pyrazinamide-resistant Mycobacterium tuberculosis in Korea. J Korean Med Sci 16:537–543

    Article  CAS  Google Scholar 

  • Lemaitre N, Sougakoff W, Truffot-Pernot C, Jarlier V (1999) Characterization of new mutations in pyrazinamide-resistant strains of Mycobacterium tuberculosis and identification of conserved regions important for the catalytic activity of the pyrazinamidase PncA. Antimicrob Agents Chemother 43:1761–1763

    CAS  Google Scholar 

  • Lemaitre N, Callebaut I, Frenois F, Jarlier V, Sougakoff W (2001) Study of the structure-activity relationships for the pyrazinamidase (PncA) from Mycobacterium tuberculosis. Biochem J 353:453–458

    Article  CAS  Google Scholar 

  • Marttila HJ, Marjamäki M, Vyshnevskaya E, Vyshnevskiy BI, Otten TF, Vasilyef AV, Viljanen MK (1999) pncA mutations in pyrazinamide-resistant Mycobacterium tuberculosis isolates from northwestern Russia. Antimicrob Agents Chemother 43:1764–1766

    CAS  Google Scholar 

  • Mirabal NC, Yzquierdo SL, Lemus D, Madruga M, Milián Y, Echemendía M, Takiff H, Martin A, Van der Stuyf P, Palomino JC, Montoro E (2010) Evaluation of colorimetric methods using nicotinamide for rapid detection of pyrazinamide resistance in Mycobacterium tuberculosis. J Clin Microbiol 48:2729–2733

    Article  CAS  Google Scholar 

  • Morlock GP, Crawford JT, Butler WR, Brim SE, Sikes D, Mazurek GH, Woodley CL, Cooksey RC (2000) Phenotypic characterization of pncA mutants of Mycobacterium tuberculosis. Antimicrob Agents Chemother 44:2291–2295

    Article  CAS  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  CAS  Google Scholar 

  • Nam JS, Yoon JH, Lee HI, Kim SW, Ro YT (2011) Molecular cloning, purification, and characterization of a superoxide dismutase from a fast-growing Mycobacterium sp. Strain JC1 DSM 3803. J Microbiol 49:399–406

    Article  CAS  Google Scholar 

  • Parthiban V, Gromiha MM, Schomburg D (2006) CUPSAT: prediction of protein stability upon point mutations. Nucleic Acids Res 34:W239–242

    Article  CAS  Google Scholar 

  • Petrella S, Gelus-Ziental N, Maudry A, Laurans C, Boudjelloul R, Sougakoff W (2011) Crystal structure of the pyrazinamidase of Mycobacterium tuberculosis: insights into natural and acquired resistance to pyrazinamide. PLoS ONE 6:e15785

    Article  CAS  Google Scholar 

  • Portugal I, Barreiro L, Moniz-Pereira J, Brum L (2004) pncA mutations in pyrazinamide-resistant Mycobacterium tuberculosis isolates in Portugal. Antimicrob Agents Chemother 48:2736–2738

    Article  CAS  Google Scholar 

  • Quiliano M, Gutierrez AH, Gilman RH, López C, Evangelista W, Sotelo J, Sheen P, Zimic M (2011) Structure-activity relationship in mutated pyrazinamidases from Mycobacterium tuberculosis. Bioinformation 6:335–339

    Article  Google Scholar 

  • Sandgren A, Strong M, Muthukrishnan P, Weiner BK, Church GM, Murray MB (2009) Tuberculosis drug resistance mutation database. PLoS Med 6:e2

    Article  Google Scholar 

  • Scorpio A, Zhang Y (1996) Mutations in pncA, a gene encoding pyrazinamidase/nicotinamidase, cause resistance to the antituberculous drug pyrazinamide in tubercle bacillus. Nat Med 2:662–667

    Article  CAS  Google Scholar 

  • Scorpio A, Lindholm-Levy P, Heifets L, Gilman R, Siddiqi S, Cynamon M, Zhang Y (1997) Characterization of pncA mutations in pyrazinamide-resistant Mycobacterium tuberculosis. Antimicrob Agents Chemother 41:540–543

    CAS  Google Scholar 

  • Sheen P, Ferrer P, Gilman RH, López-Llano J, Fuentes P, Valencia E, Zimic MJ (2009) Effect of pyrazinamidase activity on pyrazinamide resistance in Mycobacterium tuberculosis. Tuberculosis (Edinb) 89:109–113

    Article  CAS  Google Scholar 

  • Snider DE, Graczyk J, Bek E, Rogowski J (1984) Supervised six-months treatment of newly diagnosed pulmonary tuberculosis using isoniazid, rifampin, and pyrazinamide with and without streptomycin. Am Rev Respir Dis 130:1091–1094

    CAS  Google Scholar 

  • Sreevatsan S, Pan X, Zhang Y, Kreiswirth BN, Musser JM (1997) Mutations associated with pyrazinamide resistance in pncA of Mycobacterium tuberculosis complex organisms. Antimicrob Agents Chemother 41:636–640

    CAS  Google Scholar 

  • Stoffels K, Mathys V, Fauville-Dufaux M, Wintjens R, Bifani P (2012) Systematic analysis of pyrazinamide-resistant spontaneous mutants and clinical isolates of Mycobacterium tuberculosis. Antimicrob Agents Chemother 56:5186–5193

    Article  CAS  Google Scholar 

  • Suzuki Y, Suzuki A, Tamaru A, Katsukawa C, Oda H (2002) Rapid detection of pyrazinamide-resistant Mycobacterium tuberculosis by a PCR-based in vitro system. J Clin Microbiol 40:501–507

    Article  CAS  Google Scholar 

  • Unissa AN, Selvakumar N, Hassan S (2009) Insight to pyrazinamide resistance in Mycobacterium tuberculosis by molecular docking. Bioinformation 4:24–29

    Article  Google Scholar 

  • Yoon JH, Nam JS, Kim KJ, Choi Y, Lee H, Cho SN, Ro YT (2011) Molecular characterization of drug-resistant and -susceptible Mycobacterium tuberculosis isolated from patients with tuberculosis in Korea. Diagn Microbiol Infect Dis 72:52–61

    Article  Google Scholar 

  • Zhang H, Deng JY, Bi LJ, Zhou YF, Zhang ZP, Zhang CG, Zhang Y, Zhang XE (2008) Characterization of Mycobacterium tuberculosis nicotinamidase/pyrazinamidase. FEBS J 275:753–762

    Article  CAS  Google Scholar 

  • Zhang H, Bi LJ, Li CY, Sun ZG, Deng JY, Zhang XE (2009) Mutations found in the pncA gene of Mycobacterium tuberculosis in clinical pyrazinamide-resistant isolates from a local region of China. J Int Med Res 37:1430–1435

    Article  CAS  Google Scholar 

  • Zimic M, Sheen P, Quiliano M, Gutierrez A, Gilman RH (2010) Peruvian and globally reported amino acid substitutions on the Mycobacterium tuberculosis pyrazinamidase suggest a conserved pattern of mutations associated to pyrazinamide resistance. Infect Genet Evol 10:346–349

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Korea Science and Engineering Foundation (KOSEF) Grant R01-2008-000-12139-0 from the Korean Government (MEST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Tae Ro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoon, JH., Nam, JS., Kim, KJ. et al. Characterization of pncA mutations in pyrazinamide-resistant Mycobacterium tuberculosis isolates from Korea and analysis of the correlation between the mutations and pyrazinamidase activity. World J Microbiol Biotechnol 30, 2821–2828 (2014). https://doi.org/10.1007/s11274-014-1706-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-014-1706-0

Keywords

Navigation