Skip to main content
Log in

Effect of earlier unfolded protein response and efficient protein disposal system on cellulase production in Rut C30

World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Trichoderma reesei (T. reesei) has been widely used in production of cellulolytic enzymes and heterologous proteins because of its high secretion capacity. The lack of knowledge on protein secretion mechanisms, however, still hinders rational improvement on cellulase production. The transcript levels of cellulases and components involved in post-transcriptional procedures were compared in this study between two mutants, QM9414 and Rut C30 for evaluating the effects of modification and secretion upon cellulase production. The results showed that cellulase induction by cellulose drastically up-regulated expressions of the sensor of unfolded protein, chaperone and folding-assisted enzymes in endoplasmic reticulum and resulted in unfolded protein response (UPR) and low-grade increase in secretory transporters’ expression similar to that of chemical treatment. Rut C30 demonstrated earlier and more sustainable expressions of elements involved in UPR and lower amount of cellular retained cellulase compared to QM9414, indicating that Rut C30 had hypercellulolytic property partially for its earlier and enhanced UPR to more efficiently dispose of protein. Modifying post-translational peptides and enhancing protein flux to avoid protein accumulation during cellulase production may be a feasible approach for strain improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

ERAD:

Endoplasmic reticulum associated degradation

FPA:

Filter paper activity

PDA:

Potato dextrose agar

RESS:

Repression under secretion stress

UPR:

Unfolded protein response

References

  • Allcock ER, Woods DR (1981) Carboxymethyl cellulase and cellobiase production by Clostridium acetobutylicum in an industrial fermentation medium. Appl Environ Microbiol 41(2):539–541

    CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Cherry JR, Fidantsef AL (2003) Directed evolution of industrial enzymes: an update. Curr Opin Biotechnol 14(4):438–443

    Article  CAS  Google Scholar 

  • Collen A, Saloheimo M, Bailey M, Penttila M, Pakula TM (2005) Protein production and induction of the unfolded protein response in Trichoderma reesei strain Rut-C30 and its transformant expressing endoglucanase I with a hydrophobic tag. Biotechnol Bioeng 89(3):335–344. doi:10.1002/bit.20350

    Article  CAS  Google Scholar 

  • Delic M, Valli M, Graf AB, Pfeffer M, Mattanovich D, Gasser B (2013) The secretory pathway: exploring yeast diversity. FEMS Microbiol Rev. doi:10.1111/1574-6976.12020

    Google Scholar 

  • Dobson CM (2003) Protein folding and misfolding. Nature 426(6968):884–890. doi:10.1038/nature02261

    Article  CAS  Google Scholar 

  • Durand H, Clanet M, Tiraby G (1988) Genetic improvement of Trichoderma reesei for large scale cellulase production. Enzyme Microbial Technol 10(6):341–346. doi:10.1016/0141-0229(88)90012-9

    Article  CAS  Google Scholar 

  • Geysens S, Pakula T, Uusitalo J, Dewerte I, Penttila M, Contreras R (2005) Cloning and characterization of the glucosidase II alpha subunit gene of Trichoderma reesei: a frameshift mutation results in the aberrant glycosylation profile of the hypercellulolytic strain Rut-C30. Appl Environ Microbiol 71(6):2910–2924. doi:10.1128/AEM.71.6.2910-2924.2005

    Article  CAS  Google Scholar 

  • Ghose TK (1987) Measurement of cellulase activities. Pure Appl Chem 59(2):257–268

    Article  CAS  Google Scholar 

  • Ilmen M, Thrane C, Penttila M (1996) The glucose repressor gene cre1 of Trichoderma: isolation and expression of a full-length and a truncated mutant form. Mol Gen Genet 251(4):451–460

    CAS  Google Scholar 

  • Kautto L, Grinyer J, Paulsen I, Tetu S, Pillai A, Pardiwalla S, Sezerman U, Akcapinar GB, Bergquist P, Te’o J, Nevalainen H (2012) Stress effects caused by the expression of a mutant cellobiohydrolase I and proteasome inhibition in Trichoderma reesei Rut-C30. New Biotechnol. doi:10.1016/j.nbt.2012.07.005

    Google Scholar 

  • Kubicek CP (2012) Systems biological approaches towards understanding cellulase production by Trichoderma reesei. J Biotechnol. doi:10.1016/j.jbiotec.2012.05.020

    Google Scholar 

  • Kyslikova E, Volfova O (1981) Cell growth and cellulase production in Trichoderma viride on microcrystalline cellulose. Folia Microbiol (Praha) 26(4):303–308

    Article  CAS  Google Scholar 

  • Mandels M, Weber J, Parizek R (1971) Enhanced cellulase production by a mutant of Trichoderma viride. Appl Microbiol 21(1):152–154

    CAS  Google Scholar 

  • Montenecourt Bland S, Eveleigh Douglas E (1979) Selective screening methods for the isolation of high yielding cellulase mutants of Trichoderma reesei. In: hydrolysis of cellulose: mechanisms of enzymatic and acid catalysis, vol 181. Adv Chem, vol 181. Am Chem Soc, pp 289–301. doi:10.1021/ba-1979-0181.ch014

  • Montenecourt BS, Eveleigh DE (1977a) Preparation of mutants of Trichoderma reesei with enhanced cellulase production. Appl Environ Microbiol 34(6):777–782

    CAS  Google Scholar 

  • Montenecourt BS, Eveleigh DE (1977b) Semiquantitative plate assay for determination of cellulase production by Trichoderma viride. Appl Environ Microbiol 33(1):178–183

    CAS  Google Scholar 

  • Nakano A, Muramatsu M (1989) A novel GTP-binding protein, Sar1p, is involved in transport from the endoplasmic reticulum to the Golgi apparatus. J Cell Biol 109(6 Pt 1):2677–2691

    Article  CAS  Google Scholar 

  • Pakula TM, Laxell M, Huuskonen A, Uusitalo J, Saloheimo M, Penttila M (2003) The effects of drugs inhibiting protein secretion in the filamentous fungus Trichoderma reesei. Evidence for down-regulation of genes that encode secreted proteins in the stressed cells. J Biol Chem 278(45):45011–45020. doi:10.1074/jbc.M302372200

    Article  CAS  Google Scholar 

  • Penttila M, Nevalainen H, Ratto M, Salminen E, Knowles J (1987) A versatile transformation system for the cellulolytic filamentous fungus Trichoderma reesei. Gene 61(2):155–164

    Article  CAS  Google Scholar 

  • Peterson R, Nevalainen H (2012) Trichoderma reesei RUT-C30-thirty years of strain improvement. Microbiology 158(Pt 1):58–68. doi:10.1099/mic.0.054031-0

    Article  CAS  Google Scholar 

  • Reese ET (1976) Cellulase production. Biotechnol Bioeng Symp 6:91–93

    Google Scholar 

  • Saloheimo M, Pakula TM (2012) The cargo and the transport system: secreted proteins and protein secretion in Trichoderma reesei (Hypocrea jecorina). Microbiology 158(Pt 1):46–57. doi:10.1099/mic.0.053132-0

    Article  CAS  Google Scholar 

  • Saloheimo M, Lund M, Penttila ME (1999) The protein disulphide isomerase gene of the fungus Trichoderma reesei is induced by endoplasmic reticulum stress and regulated by the carbon source. Mol Gen Genet 262(1):35–45

    Article  CAS  Google Scholar 

  • Saloheimo M, Valkonen M, Penttila M (2003) Activation mechanisms of the HAC1-mediated unfolded protein response in filamentous fungi. Mol Microbiol 47(4):1149–1161

    Article  CAS  Google Scholar 

  • Saloheimo M, Wang H, Valkonen M, Vasara T, Huuskonen A, Riikonen M, Pakula T, Ward M, Penttila M (2004) Characterization of secretory genes ypt1/yptA and nsf1/nsfA from two filamentous fungi: induction of secretory pathway genes of Trichoderma reesei under secretion stress conditions. Appl Environ Microbiol 70(1):459–467

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning, vol 2. Cold spring harbor laboratory press, New York

    Google Scholar 

  • Sims AH, Gent ME, Lanthaler K, Dunn-Coleman NS, Oliver SG, Robson GD (2005) Transcriptome analysis of recombinant protein secretion by Aspergillus nidulans and the unfolded-protein response in vivo. Appl Environ Microbiol 71(5):2737–2747. doi:10.1128/AEM.71.5.2737-2747.2005

    Article  CAS  Google Scholar 

  • Stricker AR, Grosstessner-Hain K, Wurleitner E, Mach RL (2006) Xyr1 (xylanase regulator 1) regulates both the hydrolytic enzyme system and D-xylose metabolism in Hypocrea jecorina. Eukaryot Cell 5(12):2128–2137. doi:10.1128/EC.00211-06

    Article  CAS  Google Scholar 

  • Valkonen M, Penttila M, Saloheimo M (2004) The ire1 and ptc2 genes involved in the unfolded protein response pathway in the filamentous fungus Trichoderma reesei. Mol Genet Genomics 272(4):443–451. doi:10.1007/s00438-004-1070-0

    Article  CAS  Google Scholar 

  • Valkonen M, Kalkman ER, Saloheimo M, Penttila M, Read ND, Duncan RR (2007) Spatially segregated SNARE protein interactions in living fungal cells. J Biol Chem 282(31):22775–22785. doi:10.1074/jbc.M700916200

    Article  CAS  Google Scholar 

  • Vasara T, Saloheimo M, Keranen S, Penttila M (2001) Trichoderma reesei rho3 a homologue of yeast RH03 suppresses the growth defect of yeast sec15-1 mutation. Curr Genet 40(2):119–127

    Article  CAS  Google Scholar 

  • Vasara T, Keranen S, Penttila M, Saloheimo M (2002) Characterisation of two 14-3-3 genes from Trichoderma reesei: interactions with yeast secretory pathway components. Biochim Biophys Acta 1590(1–3):27–40

    Article  CAS  Google Scholar 

  • Zeilinger S, Ebner A, Marosits T, Mach R, Kubicek CP (2001) The Hypocrea jecorina HAP 2/3/5 protein complex binds to the inverted CCAAT-box (ATTGG) within the cbh2 (cellobiohydrolase II-gene) activating element. Mol Genet Genomics 266(1):56–63

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National High Technology Research and Development Program of China (863 Program) (No. 2012AA023202, 2012AA101807) and National Natural Science Foundation of China (21106102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shulin Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Zhang, D. & Chen, S. Effect of earlier unfolded protein response and efficient protein disposal system on cellulase production in Rut C30. World J Microbiol Biotechnol 30, 2587–2595 (2014). https://doi.org/10.1007/s11274-014-1682-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-014-1682-4

Keywords

Navigation