Abstract
Trichoderma reesei (T. reesei) has been widely used in production of cellulolytic enzymes and heterologous proteins because of its high secretion capacity. The lack of knowledge on protein secretion mechanisms, however, still hinders rational improvement on cellulase production. The transcript levels of cellulases and components involved in post-transcriptional procedures were compared in this study between two mutants, QM9414 and Rut C30 for evaluating the effects of modification and secretion upon cellulase production. The results showed that cellulase induction by cellulose drastically up-regulated expressions of the sensor of unfolded protein, chaperone and folding-assisted enzymes in endoplasmic reticulum and resulted in unfolded protein response (UPR) and low-grade increase in secretory transporters’ expression similar to that of chemical treatment. Rut C30 demonstrated earlier and more sustainable expressions of elements involved in UPR and lower amount of cellular retained cellulase compared to QM9414, indicating that Rut C30 had hypercellulolytic property partially for its earlier and enhanced UPR to more efficiently dispose of protein. Modifying post-translational peptides and enhancing protein flux to avoid protein accumulation during cellulase production may be a feasible approach for strain improvement.






Abbreviations
- ERAD:
-
Endoplasmic reticulum associated degradation
- FPA:
-
Filter paper activity
- PDA:
-
Potato dextrose agar
- RESS:
-
Repression under secretion stress
- UPR:
-
Unfolded protein response
References
Allcock ER, Woods DR (1981) Carboxymethyl cellulase and cellobiase production by Clostridium acetobutylicum in an industrial fermentation medium. Appl Environ Microbiol 41(2):539–541
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
Cherry JR, Fidantsef AL (2003) Directed evolution of industrial enzymes: an update. Curr Opin Biotechnol 14(4):438–443
Collen A, Saloheimo M, Bailey M, Penttila M, Pakula TM (2005) Protein production and induction of the unfolded protein response in Trichoderma reesei strain Rut-C30 and its transformant expressing endoglucanase I with a hydrophobic tag. Biotechnol Bioeng 89(3):335–344. doi:10.1002/bit.20350
Delic M, Valli M, Graf AB, Pfeffer M, Mattanovich D, Gasser B (2013) The secretory pathway: exploring yeast diversity. FEMS Microbiol Rev. doi:10.1111/1574-6976.12020
Dobson CM (2003) Protein folding and misfolding. Nature 426(6968):884–890. doi:10.1038/nature02261
Durand H, Clanet M, Tiraby G (1988) Genetic improvement of Trichoderma reesei for large scale cellulase production. Enzyme Microbial Technol 10(6):341–346. doi:10.1016/0141-0229(88)90012-9
Geysens S, Pakula T, Uusitalo J, Dewerte I, Penttila M, Contreras R (2005) Cloning and characterization of the glucosidase II alpha subunit gene of Trichoderma reesei: a frameshift mutation results in the aberrant glycosylation profile of the hypercellulolytic strain Rut-C30. Appl Environ Microbiol 71(6):2910–2924. doi:10.1128/AEM.71.6.2910-2924.2005
Ghose TK (1987) Measurement of cellulase activities. Pure Appl Chem 59(2):257–268
Ilmen M, Thrane C, Penttila M (1996) The glucose repressor gene cre1 of Trichoderma: isolation and expression of a full-length and a truncated mutant form. Mol Gen Genet 251(4):451–460
Kautto L, Grinyer J, Paulsen I, Tetu S, Pillai A, Pardiwalla S, Sezerman U, Akcapinar GB, Bergquist P, Te’o J, Nevalainen H (2012) Stress effects caused by the expression of a mutant cellobiohydrolase I and proteasome inhibition in Trichoderma reesei Rut-C30. New Biotechnol. doi:10.1016/j.nbt.2012.07.005
Kubicek CP (2012) Systems biological approaches towards understanding cellulase production by Trichoderma reesei. J Biotechnol. doi:10.1016/j.jbiotec.2012.05.020
Kyslikova E, Volfova O (1981) Cell growth and cellulase production in Trichoderma viride on microcrystalline cellulose. Folia Microbiol (Praha) 26(4):303–308
Mandels M, Weber J, Parizek R (1971) Enhanced cellulase production by a mutant of Trichoderma viride. Appl Microbiol 21(1):152–154
Montenecourt Bland S, Eveleigh Douglas E (1979) Selective screening methods for the isolation of high yielding cellulase mutants of Trichoderma reesei. In: hydrolysis of cellulose: mechanisms of enzymatic and acid catalysis, vol 181. Adv Chem, vol 181. Am Chem Soc, pp 289–301. doi:10.1021/ba-1979-0181.ch014
Montenecourt BS, Eveleigh DE (1977a) Preparation of mutants of Trichoderma reesei with enhanced cellulase production. Appl Environ Microbiol 34(6):777–782
Montenecourt BS, Eveleigh DE (1977b) Semiquantitative plate assay for determination of cellulase production by Trichoderma viride. Appl Environ Microbiol 33(1):178–183
Nakano A, Muramatsu M (1989) A novel GTP-binding protein, Sar1p, is involved in transport from the endoplasmic reticulum to the Golgi apparatus. J Cell Biol 109(6 Pt 1):2677–2691
Pakula TM, Laxell M, Huuskonen A, Uusitalo J, Saloheimo M, Penttila M (2003) The effects of drugs inhibiting protein secretion in the filamentous fungus Trichoderma reesei. Evidence for down-regulation of genes that encode secreted proteins in the stressed cells. J Biol Chem 278(45):45011–45020. doi:10.1074/jbc.M302372200
Penttila M, Nevalainen H, Ratto M, Salminen E, Knowles J (1987) A versatile transformation system for the cellulolytic filamentous fungus Trichoderma reesei. Gene 61(2):155–164
Peterson R, Nevalainen H (2012) Trichoderma reesei RUT-C30-thirty years of strain improvement. Microbiology 158(Pt 1):58–68. doi:10.1099/mic.0.054031-0
Reese ET (1976) Cellulase production. Biotechnol Bioeng Symp 6:91–93
Saloheimo M, Pakula TM (2012) The cargo and the transport system: secreted proteins and protein secretion in Trichoderma reesei (Hypocrea jecorina). Microbiology 158(Pt 1):46–57. doi:10.1099/mic.0.053132-0
Saloheimo M, Lund M, Penttila ME (1999) The protein disulphide isomerase gene of the fungus Trichoderma reesei is induced by endoplasmic reticulum stress and regulated by the carbon source. Mol Gen Genet 262(1):35–45
Saloheimo M, Valkonen M, Penttila M (2003) Activation mechanisms of the HAC1-mediated unfolded protein response in filamentous fungi. Mol Microbiol 47(4):1149–1161
Saloheimo M, Wang H, Valkonen M, Vasara T, Huuskonen A, Riikonen M, Pakula T, Ward M, Penttila M (2004) Characterization of secretory genes ypt1/yptA and nsf1/nsfA from two filamentous fungi: induction of secretory pathway genes of Trichoderma reesei under secretion stress conditions. Appl Environ Microbiol 70(1):459–467
Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning, vol 2. Cold spring harbor laboratory press, New York
Sims AH, Gent ME, Lanthaler K, Dunn-Coleman NS, Oliver SG, Robson GD (2005) Transcriptome analysis of recombinant protein secretion by Aspergillus nidulans and the unfolded-protein response in vivo. Appl Environ Microbiol 71(5):2737–2747. doi:10.1128/AEM.71.5.2737-2747.2005
Stricker AR, Grosstessner-Hain K, Wurleitner E, Mach RL (2006) Xyr1 (xylanase regulator 1) regulates both the hydrolytic enzyme system and D-xylose metabolism in Hypocrea jecorina. Eukaryot Cell 5(12):2128–2137. doi:10.1128/EC.00211-06
Valkonen M, Penttila M, Saloheimo M (2004) The ire1 and ptc2 genes involved in the unfolded protein response pathway in the filamentous fungus Trichoderma reesei. Mol Genet Genomics 272(4):443–451. doi:10.1007/s00438-004-1070-0
Valkonen M, Kalkman ER, Saloheimo M, Penttila M, Read ND, Duncan RR (2007) Spatially segregated SNARE protein interactions in living fungal cells. J Biol Chem 282(31):22775–22785. doi:10.1074/jbc.M700916200
Vasara T, Saloheimo M, Keranen S, Penttila M (2001) Trichoderma reesei rho3 a homologue of yeast RH03 suppresses the growth defect of yeast sec15-1 mutation. Curr Genet 40(2):119–127
Vasara T, Keranen S, Penttila M, Saloheimo M (2002) Characterisation of two 14-3-3 genes from Trichoderma reesei: interactions with yeast secretory pathway components. Biochim Biophys Acta 1590(1–3):27–40
Zeilinger S, Ebner A, Marosits T, Mach R, Kubicek CP (2001) The Hypocrea jecorina HAP 2/3/5 protein complex binds to the inverted CCAAT-box (ATTGG) within the cbh2 (cellobiohydrolase II-gene) activating element. Mol Genet Genomics 266(1):56–63
Acknowledgments
This research was supported by the National High Technology Research and Development Program of China (863 Program) (No. 2012AA023202, 2012AA101807) and National Natural Science Foundation of China (21106102).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wang, G., Zhang, D. & Chen, S. Effect of earlier unfolded protein response and efficient protein disposal system on cellulase production in Rut C30. World J Microbiol Biotechnol 30, 2587–2595 (2014). https://doi.org/10.1007/s11274-014-1682-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11274-014-1682-4