Skip to main content
Log in

Changes in plant cell-wall structure of corn stover due to hot compressed water pretreatment and enhanced enzymatic hydrolysis

  • Short Communication
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Corn stover is a potential feedstock for biofuel production. This work investigated physical and chemical changes in plant cell-wall structure of corn stover due to hot compressed water (HCW) pretreatment at 170–190 °C in a tube reactor. Chemical composition analysis showed the soluble hemicellulose content increased with pretreatment temperature, whereas the hemicellulose content decreased from 29 to 7 % in pretreated solids. Scanning electron microscopy revealed the parenchyma-type second cell-wall structure of the plant was almost completely removed at 185 °C, and the sclerenchyma-type second cell wall was greatly damaged upon addition of 5 mmol/L ammonium sulfate during HCW pretreatment. These changes favored accessibility for enzymatic action. Enzyme saccharification of solids by optimized pretreatment with HCW at 185 °C resulted in an enzymatic hydrolysis yield of 87 %, an enhancement of 77 % compared to the yield from untreated corn stover.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Allen SG, Kam LC, Zemann AJ, Antal MJ (1996) Fractionation of sugar cane with hot compressed liquid water. Ind Eng Chem Res 35:2709–2715

    Article  CAS  Google Scholar 

  • Ando H, Sakaki T, Kokusho T, Shibata M, Uemura Y, Hatate Y (2000) Decomposition behavior of plant biomass in hot compressed water. Ind Eng Chem Res 39:3688–3693

    Article  CAS  Google Scholar 

  • Bobleter O (1994) Hydrothermal degradation of polymers derived from plants. Prog Polym Sci 19:797–841

    Article  CAS  Google Scholar 

  • Ding SY, Liu YS, Zeng Y, Himmel ME, Baker JO, Bayer EA (2012) How does plant cell wall nanoscale architecture correlate with enzymatic digestibility? Science 338:1055–1060

    Article  CAS  Google Scholar 

  • Hansen MAT, Kristensen JB, Felby C, Jorgensen H (2011) Pretreatment and enzymatic hydrolysis of wheat straw (Triticum aestivum L.)—the impact of lignin relocation and plant tissues on enzymatic accessibility. Bioresour Technol 102:2804–2811

    Article  CAS  Google Scholar 

  • Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804

    Article  CAS  Google Scholar 

  • Holgate HR, Meyer JC, Tester JW (1995) Glucose hydrolysis and oxidation in supercritical water. AIChE J 41:637

    Article  CAS  Google Scholar 

  • Kobayashi N, Okada N, Hirakawa A, Sato T, Kobayashi J, Hatano S, Itaya Y, Mori S (2009) Characteristics of solid residues obtained from hot-compressed-water treatment of woody biomass. Ind Eng Chem Res 48(1):373–379

    Article  CAS  Google Scholar 

  • Kohlmann KL, Westgate PJ, Velayudhan A, Weil J, Sarikaya A, Brewer MA, Hendrickson RL, Ladisch MR (1996) Enzyme conversion of lignocellulosic plant materials for resource recovery in a controlled ecological life support system. Adv Space Res 18:251–265

    Article  CAS  Google Scholar 

  • Lee I, Ji SW (2013) Impact of cationic polyelectrolyte on the nanoshear hybrid alkaline pretreatment of corn stover: morphology and saccharification study. Bioresour Technol 133:45–50

    Article  Google Scholar 

  • Lee IGM, Kim S, Ihm SK (2002) Gasification of glucose in supercritical water. Ind Eng Chem Res 41:1182

    Article  CAS  Google Scholar 

  • Liu CG, Wyman CE (2005) Partial flow of compressed-hot water through corn stover to enhance hemicellulose sugar recovery and enzymatic digestibility of cellulose. Bioresour Technol 96:1978–1985

    Article  CAS  Google Scholar 

  • Liu CM, Chu CY, Lee WY, Li YC, Wu SY, Chou YP (2013) Biohydrogen production evaluation from rice straw hydrolysate by concentrated acid pre-treatment in both batch and continuous systems. Int J Hydrgen Energy 38:15823–15829

    Article  CAS  Google Scholar 

  • Lu X, Saka S (2010) Hydrolysis of Japanese beech by batch and semi flow water under subcritical temperatures and pressures. Biomass Bioenerg 34:1089–1097

    Article  CAS  Google Scholar 

  • Lu X, Saka S (2012) New insights on monosaccharides isomerization, dehydration and fragmentation in hot-compressed water. J Supercrit Fluid 61:146–156

    Article  Google Scholar 

  • Lu X, Yamauchi K, Phaiboonsilpa N, Saka S (2009) Two-step hydrolysis of Japanese beech as treated by semi-flow hot-compressed water. J Wood Sci 55:367–375

    Article  CAS  Google Scholar 

  • Matsumura Y, Sasaki M, Okuda K, Takami S, Ohara S, Umetsu M, Adschiri T (2006) Supercritical water treatment of biomass for energy and material recovery. Combust Sci Technol 178:509–536

    Article  CAS  Google Scholar 

  • Mok W, Antal MJ (1992) Hot water only solvolysis of whole biomass hemicellulose by hot compressed liquid water. Ind Eng Chem Res 31:1157–1161

    Article  CAS  Google Scholar 

  • Petrus L, Noordermeer MA (2006) Biomass to biofuels, a chemical perspective. Green Chem 8:861–867

    Article  CAS  Google Scholar 

  • Pordesimo LO, Hamesb BR, Sokhansanj S, Edens WC (2005) Variation in corn stover composition and energy content with crop maturity. Biomass Bioenerg 28:366–374

    Article  CAS  Google Scholar 

  • Sakaki T, Shibata M, Sumi T, Yasuda S (2002) Saccharification of cellulose using a hot-compresses water-flow reactor. Ind Eng Chem Res 41:661–665

    Article  CAS  Google Scholar 

  • Selig M, Weiss N, Ji Y (2008) Enzymatic saccharification of lignocellulosic biomass. Laboratory Analytical Procedure (LAP), NERL/TP-510-42649. National Renewable Energy Laboratory, Golden

    Google Scholar 

  • Seri K, Sakaki T, Shibata M, Inoue Y, Ishida H (2002) Lanthanum(III)-catalyzed degradation of cellulose at 250 & #xB0;c. Bioresour Technol 81:257–260

    Article  CAS  Google Scholar 

  • Sims REH, Mabee W, Saddler JN, Taylor M (2010) An overview of second generation biofuel technologies. Bioresour Technol 101:1570–1580

    Article  CAS  Google Scholar 

  • Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008) Determination of structural carbohydrates and lignin in biomass. In: Edward JW (ed) Laboratory Analytical Procedure (LAP), NERL/TP-510-42618. National Renewable Energy Laboratory, Golden

  • Stephen J, Allen G, Schulman D, Lichwa J, Antal MJ (2001) A comparison between hot liquid water and steam fractionation of corn fiber. Ind Eng Chem Res 40:2934–2941

    Article  Google Scholar 

  • Teymouri F, Perez LL, Alizadeh H, Dale BE (2005) Optimization of the ammonia fiber explosion (AFEX) treatment parameters for enzymatic hydrolysis of corn stover. Biomass Bioenerg 96:2014–2018

    CAS  Google Scholar 

  • Torget RW, Kidam KL, Hsu TA, Philippidis GP, Wyman CE (1998) Prehydrolysis of lignocelluloses. US Pat 5:705–769

    Google Scholar 

  • Wang Y, Shi WL, Liu XY, Shen Y, Bao XM, Bai FW, Qu YB (2004) Establishment of a xylose metabolic pathway in an industrial strain of Saccharomyces cerevisiae. Biotechnol Lett 26:885–890

    Article  CAS  Google Scholar 

  • Watanabe M, Inomata H, Arai K (2002) Catalytic hydrogen generation from biomass (glucose and cellulose) with ZrO2 in supercritical water. Biomass Bioenerg 22:405

    Article  CAS  Google Scholar 

  • Weil JR, Brewer MA, Hendrickson RL, Sarikaya A, Ladisch MR (1998) Continuous pH monitoring during pretreatment of yellow poplar wood sawdust by pressure-cooking in water. Appl Biochem Biotechnol 70(72):99–111

    Article  Google Scholar 

  • Xu YJ, Li KC, Zhang MY (2007) Lignin precipitation on the pulp fibers in the ethanol-based organosolv pulping. Physicochem Eng Asp 301(1–3):255–263

    Article  CAS  Google Scholar 

  • Yang MH, Li WL, Liu BB, Li Q, Xing JM (2010) High-concentration sugars production from corn stover based on combined pretreatments and fed-batch process. Bioresour Technol 101:4884–4888

    Article  CAS  Google Scholar 

  • Yang M, Kuittinen S, Zhang JH, Keinänen M, Pappinen A (2013) Effect of dilute acid pretreatment on the conversion of barley straw with grains to fermentable sugars. Bioresour Technol 146:444–450

    Article  CAS  Google Scholar 

  • Yu Y, Wu HW (2010) Understanding the primary liquid products of cellulose hydrolysis in hot-compressed water at various reaction temperatures. Energy Fuel 24(3):1963–1971

    Article  CAS  Google Scholar 

  • Zeng W, Chen HZ (2009) Air pressure pulsation solid state fermentation of feruloyl esterase by Aspergillus niger. Bioresour Technol 100:1371–1375

    Article  CAS  Google Scholar 

  • Zhang J, Zhu ZN, Wang XF, Wang N, Wang W, Bao J (2010) Biodetoxification of toxins generated from lignocellulose pretreatment using a newly isolated fungus Amorphotheca resinae ZN1 and the consequent ethanol fermentation. Biotechnol Biofuels 3:26

    Article  Google Scholar 

  • Zhang J, Wang XS, Chu DQ, He YQ, Bao J (2011) Dry pretreatment of lignocellulose with extremely low steam and water usage for bioethanol production. Bioresour Technol 102:4480–4488

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Chinese National Programs for High Technology Research and Development (Grants 2012aa022301 and 2012AA101807).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianmin Xing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, W., Yang, M., Wang, C. et al. Changes in plant cell-wall structure of corn stover due to hot compressed water pretreatment and enhanced enzymatic hydrolysis. World J Microbiol Biotechnol 30, 2325–2333 (2014). https://doi.org/10.1007/s11274-014-1651-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-014-1651-y

Keywords

Navigation