Skip to main content
Log in

Histamine-producing bacteria in blue scad (Decapterus maruadsi) and their abilities to produce histamine and other biogenic amines

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Using decarboxylation medium and 16S rDNA sequence analysis, histamine-producing bacteria (HPB) in blue scad (Decapterus maruadsi) were isolated and identified, and the histamine-producing abilities of the isolated HPB were determined. Nine mesophilic strains (H1–H9) isolated from the muscle of blue scad were identified as the genera of HPB, including Arthrobacter bergeri (H1), Pseudomonas sp. (H2, H5 and H6), Psychrobacter sp. (H3), Shewanella baltica (H4 and H7), and Aeromonas salmonicida (H8 and H9), respectively. Results showed that most of the HPB strains were weak on histamine formation (13.0–20.4 mg/l), except for the H8 strain with the ability of producing 115 mg of histamine/l in trypticase soy broth containing 1.0 % l-histidine. As the strongest HPB in blue scad, bacterial strain H8 also presented a strong ability to produce other biogenic amines, such as putrescine, cadaverine, spermidine, spermine, tyramine and tryptamine. Therefore, the H8 strain identified as the genus of A. salmonicida was the dominant mesophilic HPB strain for producing histamine and other biogenic amines in blue scad at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Australian Food Standards Code (2001) Part D: fish and fish products. Standards D1 and D2. Version 18

  • Bartholomew BA, Berry PR, Rodhouse JC, Gilbert RJ, Murray CK (1987) Scombrotoxic fish poisoning in Britain: features of over 250 suspected incidents from 1976 to 1986. Epidemiol Infect 99(3):775–782

    Article  CAS  Google Scholar 

  • Bermejo A, Mondaca MA, Roeckel M, Marti MC (2004) Bacterial formation of histamine in jack mackerel (Trachurus symmetricus). J Food Process Preserv 28(3):201–222

    Article  CAS  Google Scholar 

  • Chen HC, Kung HF, Chen WC, Lin WF, Hwang DF, Lee YC, Tsai YH (2008) Determination of histamine and histamine-producing bacteria in tuna dumpling implicated in a food-borne poisoning. Food Chem 106(2):612–618

    Article  CAS  Google Scholar 

  • Chen HC, Huang YR, Hsu HH, Lin CS, Chen WC, Lin CM, Tsai YH (2010) Determination of histamine and biogenic amines in fish cubes (Tetrapturus angustirostris) implicated in a food-borne poisoning. Food Control 21(1):13–18

    Article  CAS  Google Scholar 

  • Commission Regulation (EC) (2005) Microbiological criteria for foodstuffs. Official Journal of the European Union. L 338/1-26

    Google Scholar 

  • Fadhlaoui-Zid K, Curiel JA, Landeta G, Fattouch S, Reverón I, Rivas BDL, Sadok S, Muñoz R (2012) Biogenic amine production by bacteria isolated from ice-preserved sardine and mackerel. Food Control 25(1):85–95

    Article  Google Scholar 

  • FDA (1996) Decomposition and histamine in raw, frozen tuna and mahi–mahi, canned tuna and related species. Compliace Policy Guide 7108:240

    Google Scholar 

  • Gennari M, Tomaselli S, Cotrona V (1999) The microflora of fresh and spoiled sardines (Sardina pilchardus) caught in Adriatic (Mediterranean) sea and stored in ice. Food Microbiol 16:15–28

    Article  Google Scholar 

  • Gram L, Huss HH (1996) Microbiological spoilage of fish and fish products. Int J Food Microbiol 33:121–137

    Article  CAS  Google Scholar 

  • Hsu HH, Chuang TC, Lin HC, Huang YR, Lin CM, Kung HF, Tsai YH (2009) Histamine content and histamine-forming bacteria in dried milkfish (Chanos chanos) products. Food Chem 114:933–938

    Article  CAS  Google Scholar 

  • Hu Y, Huang ZY, Li J, Yang H (2012) Concentrations of biogenic amines in fish, squid and octopus and their changes during storage. Food Chem 135(4):2604–2611

    Article  CAS  Google Scholar 

  • Huang YR, Liu KJ, Hsieh HS, Hsieh CH, Hwang DF, Tsai YH (2010) Histamine level and histamine-forming bacteria in dried fish products sold in Penghu Island of Taiwan. Food Control 21:1234–1239

    Article  CAS  Google Scholar 

  • Jaw YM, Chen YY, Lee YC, Lee PH, Jiang CM, Tsai YH (2012) Histamine content and isolation of histamine-producing bacteria in fish meal and fish soluble concentrate. Fish Sci 78(1):155–162

    Article  CAS  Google Scholar 

  • Kanki M, Yoda T, Ishibashi M, Tsukamoto T (2004) Photobacterium phosphoreum caused a histamine fish poisoning incident. Int J Food Microbiol 92(1):79–87

    Article  CAS  Google Scholar 

  • Kanki M, Yoda T, Tsukamoto T, Baba E (2007) Histidine decarboxylases and their role in accumulation of histamine in tuna and dried saury. Appl Environ Microbiol 73(5):1467–1473

    Article  CAS  Google Scholar 

  • Kim SH, Field KG, Morrissey MT, Price RJ, Wei CI, An H (2001) Source and identification of histamine-producing bacteria from temperature-abused albacore. J Food Prot 64(7):1035–1044

    CAS  Google Scholar 

  • Kim MK, Mah JH, Hwang HJ (2009) Biogenic amine formation and bacterial contribution in fish, squid and shellfish. Food Chem 116(1):87–95

    Article  CAS  Google Scholar 

  • Kim JY, Kim D, Park P, Kang HI, Ryu EK, Kim SM (2011) Effects of storage temperature and time on the biogenic amine content and microfloras in Korean turbid rice wine, Makgeolli. Food Chem 128(1):87–92

    Article  CAS  Google Scholar 

  • Köse S, Quantick P, Hall G (2003) Changes in the levels of histamine during processing and storage of fish meal. Anim Feed Sci Technol 107:161–172

    Article  Google Scholar 

  • Kung HF, Wang TY, Huang YR, Lin CS, Wu WS, Lin CM, Tsai YH (2009) Isolation and identification of histamine-forming bacteria in tuna sandwiches. Food Control 20(11):1013–1017

    Article  CAS  Google Scholar 

  • Kung HF, Tsai YH, Chang SC, Hong TY (2012) Biogenic amine content, histamine-producing bacteria, and adulteration of pork in tuna sausage products. J Food Prot 75(10):1814–1822

    Article  CAS  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackbrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–175

    Google Scholar 

  • Lopez-Sabater EI, Rodriguez-Jerez JJ, Roig-Sagues AX, Mora-Ventura MA (1994) Bacteriological quality of tuna fish (Thunnus thynnus) destined for canning: effect of tuna handling on presence of histidine decarboxylase bacteria and histamine level. J Food Prot 57(4):318–323

    Google Scholar 

  • Macan J, Vučemilović A, Turk R, Medugorac B, Milković-Kraus S, Gomzi M, Poljak I (2000) Occupational histamine poisoning by fish flour: a case report. Occup Med 50(1):22–24

    Article  CAS  Google Scholar 

  • Middlebrooks BL, Toom PM, Douglas WL, Harrison RE, Mcdowell S (1988) Effects of storage time and temperature on the microflora and amine-development in Spanish Mackerel (Scomberomorus maculatus). J Food Sci 53(4):1024–1029

    Article  CAS  Google Scholar 

  • Naila A, Flint S, Fletcher GC, Bremer PJ, Meerdink G (2012) Histamine stability in Rihaakuru at −80, 4 and 30°C. Food Chem 135:1226–1229

    Article  CAS  Google Scholar 

  • Niven CF, Jeffrey MB, Corlett DA (1981) Differential plating medium for quantitative detection of histamine-producing bacteria. Appl Environ Microbiol 41(1):321–322

    Google Scholar 

  • Okuzumi M, Hiraishi A, Kobayashi T, Fujii T (1994) Photobacterium histaminum sp. nov, a histamine-producing marine bacterium. Int J Syst Bacteriol 44(4):631–636

    Article  CAS  Google Scholar 

  • Sato T, Fujii T, Masuda M, Okuzumi M (1994) Changes in numbers of histamine-metabolic bacteria and histamine content during storage of common mackerel. Fish Sci 60:299–302

    CAS  Google Scholar 

  • Satomi M, Furushita M, Oikawa H, Yoshikawa-Takahashi M, Yano Y (2008) Analysis of a 30 kbp plasmid encoding histidine decarboxylase gene in Tetragenococcus halophilus isolated from fish sauce. Int J Food Microbiol 126:202–209

    Article  CAS  Google Scholar 

  • Shewan JM, Hobbs G, Hodgkiss W (1960) A determinative scheme for the identification of certain genera of Gram-negative bacteria, with special reference to the Pseudomonadaceae. J Appl Microbiol 23(3):379–390

    Google Scholar 

  • South African Bureau of Standards (2001) Regulations governing microbiological standards for foodstuffs and related matters. Government Notice No. R 490

  • Sun LC, Yoshida A, Cai QF, Liu GM, Weng L, Tachibana K, Su WJ, Cao MJ (2010) Mung bean trypsin inhibitor is effective in suppressing the degradation of myofibrillar proteins in the skeletal muscle of blue scad (Decapterus maruadsi). J Agric Food Chem 58(24):12986–12992

    Article  CAS  Google Scholar 

  • Takahashi H, Kimura B, Yoshikawa M, Fuji T (2003) Cloning and sequencing of the histidine decarboxylase genes of gram-negative, histamine-producing bacteria and their application in detection and identification of these organisms in fish. Appl Environ Microbiol 69:2568–2579

    Article  CAS  Google Scholar 

  • Taylor SL (1985) Histamine poisoning associated with fish, cheese, and other foods. World Health Organization, Switzerland, pp 1–47

    Google Scholar 

  • Taylor SL, Speckhard MW (1983) Isolation of histamine-producing bacteria from frozen tuna. Mar Fish Rev 45(4–6):35–39

    Google Scholar 

  • Tsai YH, Kung HF, Lee TM, Chen HC, Chou SS, Wei CI, Hwang DF (2005) Determination of histamine in canned mackerel implicated in a food borne poisoning. Food Control 16(7):579–585

    Article  CAS  Google Scholar 

  • Tsai YH, Hsieh HS, Chen HC, Cheng SH, Chai TJ, Hwang DF (2007) Histamine level and species identification of billfish meats implicated in two food borne poisonings. Food Chem 104(4):1366–1371

    Article  CAS  Google Scholar 

  • Yatsunami K, Echigo T (1992) Occurrence of halotolerant and halophili histamine-forming bacteria in red meat fish products. Bull Jpn Soc Sci Fish 58:515–520

    Article  CAS  Google Scholar 

  • Zhong C, Cai QF, Liu GM, Sun LC, Hara K, Su WJ, Cao MJ (2012) Purification and characterisation of cathepsin L from the skeletal muscle of blue scad (Decapterus maruadsi) and comparison of its role with myofibril-bound serine proteinase in the degradation of myofibrillar proteins. Food Chem 133(4):1560–1568

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by grants from the National Natural Science Foundation of China (40,771,185), the Natural Science Foundation of Fujian Province of China (2012J01046), the Science and Technology Planning Project of Fujian Province, China (2012Y0052), the Science and Technology Planning Project of Xiamen, China (3502Z20113024), the Foundation of the Key Project Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences (KLUEH201303), and the Foundation for Innovative Research Team of Jimei University (2010A007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyong Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, Y., Huang, Z. & Chen, X. Histamine-producing bacteria in blue scad (Decapterus maruadsi) and their abilities to produce histamine and other biogenic amines. World J Microbiol Biotechnol 30, 2213–2221 (2014). https://doi.org/10.1007/s11274-014-1642-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-014-1642-z

Keywords

Navigation