Skip to main content
Log in

Induction, resuscitation and quantitative real-time polymerase chain reaction analyses of viable but nonculturable Vibrio vulnificus in artificial sea water

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Vibrio vulnificus, an important food-borne pathogen, is known to enter viable but nonculturable (VBNC) state under low temperature and low nutrition stress conditions. Present study examined the time required for induction of VBNC state and temperature which induces resuscitation of V. vulnificus YJ016. The change in cell morphology and gene expression during VBNC state and in resuscitated cells was also examined. V. vulnificus incubated in artificial sea water at 4 °C entered VBNC state after considerably extended time (70 days). An increase in temperature by 6 °C from the VBNC induction temperature (4 °C) resulted in resuscitation of VBNC cells; however, maximum resuscitation was observed when VBNC cells were held at 23 °C for 24 h. VBNC cells changed their morphology from comma shape to coccoid shape. Two rounds of induction of VBNC and resuscitation were possible with V. vulnificus cells; however, there was progressive reduction in number of resuscitated cells and after 190 days cells failed to resuscitate. Significant up-regulation of genes related to membrane proteins [porinH (10.4-fold), ompU (2.9-fold)], regulatory proteins [envZ (5.6-fold), toxR (4.5-fold), toxS (4.8-fold)], oxidative stress related protein katG (2.3-fold), cell division/maintenance proteins [ftsZ (4.3), mreB (6.5-fold)] and resuscitating promoter factor yeaZ (fourfold) was observed during resuscitation with respect to VBNC state indicating that these genes play a role during resuscitation. Gene expression data presented here would enhance our understanding of resuscitation of V. vulnificus from VBNC state. The results also highlight the importance of maintenance of low temperature during storage of seafood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abe A, Ohashi E, Ren H, Hayashi T, Endo H (2007) Isolation and characterization of a cold-induced nonculturable suppression mutant of Vibrio vulnificus. Microbiol Res 162(2):130–138

    Article  CAS  Google Scholar 

  • Albertini MC, Accorsi A, Teodori L, Pierfelici L, Uguccioni F, Rocchi MB, Burattini S, Citterio B (2006) Use of multiparameter analysis for Vibrio alginolyticus viable but nonculturable state determination. Cytometry A 69(4):260–265

    Article  Google Scholar 

  • Asakura H, Ishiwa A, Arakawa E, Makino S, Okada Y, Yamamoto S, Igimi S (2007) Gene expression profile of Vibrio cholerae in the cold stress-induced viable but non-culturable state. Environ Microbiol 9(4):869–879

    Article  CAS  Google Scholar 

  • Aydin I, Dimitropoulos A, Chen SH, Thomas C, Roujeinikova A (2011) Purification, crystallization and preliminary X-ray crystallographic analysis of the putative Vibrio parahaemolyticus resuscitation-promoting factor YeaZ. Acta Crystallogr, Sect F: Struct Biol Cryst Commun 67(Pt 5):604–607

    Article  CAS  Google Scholar 

  • Barcina I, Arana I (2009) The viable but nonculturable phenotype: a crossroads in the life-cycle of non-differentiating bacteria? Rev Environ Sci Biotechnol 8(3):245–255

    Article  Google Scholar 

  • Beaubrun JJ, Kothary MH, Curtis SK, Flores NC, Eribo BE, Tall BD (2008) Isolation and characterization of Vibrio tubiashii outer membrane proteins and determination of a toxR homolog. Appl Environ Microbiol 74(3):907–911

    Article  CAS  Google Scholar 

  • Chaiyanan S, Grim C, Maugel T, Huq A, Colwell RR (2007) Ultrastructure of coccoid viable but non-culturable Vibrio cholerae. Environ Microbiol 9(2):393–402

    Article  Google Scholar 

  • Chen CY, Wu KM, Chang YC, Chang CH, Tsai HC, Liao TL, Liu YM, Chen HJ, Shen AB, Li JC, Su TL, Shao CP, Lee CT, Hor LI, Tsai SF (2003) Comparative genome analysis of Vibrio vulnificus, a marine pathogen. Genome Res 13(12):2577–2587

    Article  CAS  Google Scholar 

  • Chen SY, Jane WN, Chen YS, Wong HC (2009) Morphological changes of Vibrio parahaemolyticus under cold and starvation stresses. Int J Food Microbiol 129(2):157–165

    Article  CAS  Google Scholar 

  • Colwell RR, Brayton P, Herrington D, Tall B, Huq A, Levine MM (1996) Viable but nonculturable Vibrio cholerae O1 revert to a culturable state in human intestine. World J Microb Biotechnol 12(1):28–31

    Article  CAS  Google Scholar 

  • Coutard F, Lozach S, Pommepuy M, Hervio-Heath D (2007) Real-time reverse transcription-PCR for transcriptional expression analysis of virulence and housekeeping genes in viable but nonculturable Vibrio parahaemolyticus after recovery of culturability. Appl Environ Microbiol 73(16):5183–5189

    Article  CAS  Google Scholar 

  • Crawford JA, Kaper JB, DiRita VJ (1998) Analysis of ToxR-dependent transcription activation of ompU, the gene encoding a major envelope protein in Vibrio cholerae. Mol Microbiol 29(1):235–246

    Article  CAS  Google Scholar 

  • Darcan C, Ozkanca R, Idil O, Flint KP (2009) Viable but non-culturable state (VBNC) of Escherichia coli related to EnvZ under the effect of pH, starvation and osmotic stress in sea water. Pol J Microbiol 58(4):307–317

    CAS  Google Scholar 

  • Du M, Chen J, Zhang X, Li A, Li Y (2007) Characterization and resuscitation of viable but nonculturable Vibrio alginolyticus VIB283. Arch Microbiol 188(3):283–288

    Article  CAS  Google Scholar 

  • Handford JI, Ize B, Buchanan G, Butland GP, Greenblatt J, Emili A, Palmer T (2009) Conserved network of proteins essential for bacterial viability. J Bacteriol 191(15):4732–4749

    Article  CAS  Google Scholar 

  • Jang KI, Kim MG, Ha SD, Kim KS, Lee KH, Chung DH, Kim CH, Kim KY (2007) Morphology and adhesion of Campylobacter jejuni to chicken skin under varying conditions. J Microbiol Biotechnol 17(2):202–206

    Google Scholar 

  • Jiang X, Chai TJ (1996) Survival of Vibrio parahaemolyticus at low temperatures under starvation conditions and subsequent resuscitation of viable, nonculturable cells. Appl Environ Microbiol 62(4):1300–1305

    CAS  Google Scholar 

  • Johnston MD, Brown MH (2002) An investigation into the changed physiological state of Vibrio bacteria as a survival mechanism in response to cold temperatures and studies on their sensitivity to heating and freezing. J Appl Microbiol 92(6):1066–1077

    Article  CAS  Google Scholar 

  • Kong IS, Bates TC, Hülsmann A, Hassan H, Smith BE, Oliver JD (2004) Role of catalase and oxyR in the viable but nonculturable state of Vibrio vulnificus. FEMS Microbiol Ecol 50(3):133–142

    Article  CAS  Google Scholar 

  • Mishra A, Taneja N, Sharma M (2012) Viability kinetics, induction, resuscitation and quantitative real-time polymerase chain reaction analyses of viable but nonculturable Vibrio cholerae O1 in freshwater microcosm. J Appl Microbiol 112(5):945–953

    Article  CAS  Google Scholar 

  • Nichols CE, Johnson C, Lockyer M, Charles IG, Lamb HK, Hawkins AR, Stammers DK (2006) Structural characterization of Salmonella typhimurium YeaZ, an M22 O-sialoglycoprotein endopeptidase homolog. Proteins 64(1):111–123

    Article  CAS  Google Scholar 

  • Nilsson L, Oliver JD, Kjelleberg S (1991) Resuscitation of Vibrio vulnificus from the viable but nonculturable state. J Bacteriol 173(16):5054–5059

    CAS  Google Scholar 

  • Nowakowska J, Oliver JD (2013) Resistance to environmental stresses by Vibrio vulnificus in the viable but nonculturable state. FEMS Microbiol Ecol 84(1):213–222

    Article  CAS  Google Scholar 

  • Oliver JD (2000) Problems in detecting dormant (VBNC) cells and the role of DNA elements in this response. In: Jansson JK, van Elsas JD, Bailey MJ (eds) Tracking genetically-engineered microorganisms. Landes Biosciences, Georgetown, pp 1–15

    Google Scholar 

  • Oliver JD (2010) Recent findings on the viable but nonculturable state in pathogenic bacteria. FEMS Microbiol Rev 34(4):415–425

    CAS  Google Scholar 

  • Oliver JD, Bockian R (1995) In vivo resuscitation, and virulence toward mice, of viable but nonculturable cells of Vibrio vulnificus. Appl Environ Microbiol 61(7):2620–2623

    CAS  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45

    Article  CAS  Google Scholar 

  • Pinto D, Santos MA, Chambel L (2013) Thirty years of viable but nonculturable state research: unsolved molecular mechanisms. Crit Rev Microbiol. doi:10.3109/1040841X.2013.794127

    Google Scholar 

  • Saux MFL, Hervio-Heath D, Loaec S, Colwell RR, Pommepuy M (2002) Detection of cytotoxin-hemolysin mRNA in nonculturable populations of environmental and clinical Vibrio vulnificus strains in artificial seawater. Appl Environ Microbiol 68(11):5641–5646

    Article  Google Scholar 

  • Smith B, Oliver JD (2006) In situ and in vitro gene expression by Vibrio vulnificus during entry into, persistence within, and resuscitation from the viable but nonculturable state. Appl Environ Microbiol 72(2):1445–1451

    Article  CAS  Google Scholar 

  • Vora GJ, Meador CE, Bird MM, Bopp CA, Andreadis JD, Stenger DA (2005) Microarray-based detection of genetic heterogeneity, antimicrobial resistance, and the viable but nonculturable state in human pathogenic Vibrio spp. Proc Natl Acad Sci USA 102(52):19109–19114

    Article  CAS  Google Scholar 

  • Whitesides MD, Oliver JD (1997) Resuscitation of Vibrio vulnificus from the viable but nonculturable state. Appl Environ Microbiol 63(3):1002–1005

    CAS  Google Scholar 

  • Wolf P, Oliver JD (1992) Temperature effects on the viable but nonculturable state of Vibrio vulnificus. FEMS Microbiol Ecol 101(1):33–39

    Article  Google Scholar 

  • Wong HC, Wang P, Chen SY, Chiu SW (2004) Resuscitation of viable but non-culturable Vibrio parahaemolyticus in a minimum salt medium. FEMS Microbiol Lett 233(2):269–275

    Article  CAS  Google Scholar 

  • Xu C, Ren H, Wang S, Peng X (2004) Proteomic analysis of salt-sensitive outer membrane proteins of Vibrio parahaemolyticus. Res Microbiol 155(10):835–842

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank professor Lien-I Hor, Department of Microbiology and Immunology, National Cheng-Kung University, for generously providing V. vulnificus YJ016. We acknowledge ICON Analytical Equipments Pvt. Ltd., Worli, Mumbai for carrying out SEM observations of the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayant R. Bandekar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rao, N.V., Shashidhar, R. & Bandekar, J.R. Induction, resuscitation and quantitative real-time polymerase chain reaction analyses of viable but nonculturable Vibrio vulnificus in artificial sea water. World J Microbiol Biotechnol 30, 2205–2212 (2014). https://doi.org/10.1007/s11274-014-1640-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-014-1640-1

Keywords

Navigation