Skip to main content

Advertisement

Log in

An efficient alternative marker for specific identification of Mycobacterium tuberculosis

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Rapid and accurate identification of mycobacteria to the species level is important to provide epidemiological information and to guide the appropriate treatment, especially identification of the Mycobacterium tuberculosis (MTB) which is the leading pathogen causing tuberculosis. The genetic marker named as Mycobacterium tuberculosis specific sequence 90 (mtss90) was screened by a bioinformatics software and verified by a series of experiments. To test its specificity, 266 strains of microorganisms and human cells were used for the mtss90 conventional PCR method. Moreover, the efficiency of mtss90 was evaluated by comparing 16S rDNA (Mycobacterium genus-specific), IS6110 (specific identification of MTB complex), mtp40 (MTB-specific) and PNB/TCH method (traditional bacteriology testing) in Mycobacterium strains. All MTB isolates were mtss90 positive. No amplification was observed from any other tested strains with M. microti as an exception. Compared with the traditional PNB/TCH method, the coincidence rate was 99.1 % (233/235). All of the mtss90 positive strains were IS6110 and 16S rDNA positive, indicating a 100 % coincidence rate (216/216) between mtss90 and these two genetic markers. Additionally, mtss90 had a better specificity than mtp40 in the identification of MTB. Lastly, a real-time PCR diagnostic assay was developed for the rapid identification of MTB. In conclusion, mtss90 may be an efficient alternative marker for species-specific identification of MTB and could be used for the diagnosis of tuberculosis combined with other genetic markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bouakaze C, Keyser C, De Martino S, Sougakoff W, Veziris N, Dabernat H, Ludes B (2010) Identification and genotyping of Mycobacterium tuberculosis complex species by use of a SNaPshot minisequencing-based assay. J Clin Microbiol 48(5):1758–1766

    Article  CAS  Google Scholar 

  • Brosch R, Gordon SV, Marmiesse M, Brodin P, Buchrieser C, Eiglmeier K, Garnier T, Gutierrez C, Hewinson G, Kremer K (2002) A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc Natl Acad Sci USA 99(6):3684–3689

    Article  CAS  Google Scholar 

  • Das S, Paramasivan C, Lowrie D, Prabhakar R, Narayanan P (1995) IS6110 restriction fragment length polymorphism typing of clinical isolates of Mycobacterium tuberculosis from patients with pulmonary tuberculosis in Madras. South India. Tuber Lung Dis 76(6):550–554

    Article  CAS  Google Scholar 

  • Del Portillo P, Murillo LA, Patarroyo ME (1991) Amplification of a species-specific DNA fragment of Mycobacterium tuberculosis and its possible use in diagnosis. J Clin Microbiol 29(10):2163–2168

    Google Scholar 

  • Frothingham R, Hills HG, Wilson KH (1994) Extensive DNA sequence conservation throughout the Mycobacterium tuberculosis complex. J Clin Microbiol 32(7):1639–1643

    CAS  Google Scholar 

  • Giampaglia C, Martins M, Inumaru V, Butuem I, Telles M (2005) Evaluation of a rapid differentiation test for the Mycobacterium tuberculosis complex by selective inhibition with rho-nitrobenzoic acid and thiophene-2-carboxylic acid hydrazide. Int J Tuberc Lung Dis 9(2):206–209

    CAS  Google Scholar 

  • Hellyer TJ, DesJardin LE, Assaf MK, Bates JH, Cave MD, Eisenach KD (1996) Specificity of IS6110-based amplification assays for Mycobacterium tuberculosis complex. J Clin Microbiol 34(11):2843–2846

    CAS  Google Scholar 

  • Ho C–C, Lau CC, Martelli P, Chan S-Y, Cindy W, Wu AK, Yuen K-Y, Lau SK, Woo PC (2011a) Novel pan-genomic analysis approach in target selection for multiplex PCR identification and detection of Burkholderia pseudomallei, Burkholderia thailandensis, and Burkholderia cepacia complex species: a proof-of-concept study. J Clin Microbiol 49(3):814–821

    Article  CAS  Google Scholar 

  • Ho C–C, Yuen K-Y, Lau SK, Woo PC (2011b) Rapid identification and validation of specific molecular targets for detection of Escherichia coli O104: H4 outbreak strain by use of high-throughput sequencing data from nine genomes. J Clin Microbiol 49(10):3714–3716

    Article  Google Scholar 

  • Ho C–C, Wu AK, Cindy W, Yuen K-Y, Lau SK, Woo PC (2012) Automated pangenomic analysis in target selection for PCR detection and identification of bacteria by use of ssGeneFinder Webserver and its application to Salmonella enterica serovar Typhi. J Clin Microbiol 50(6):1905–1911

    Article  CAS  Google Scholar 

  • Huard RC, de Oliveira Lazzarini LC, Butler WR, van Soolingen D, Ho JL (2003) PCR-based method to differentiate the subspecies of the Mycobacterium tuberculosis complex on the basis of genomic deletions. J Clin Microbiol 41(4):1637–1650

    Article  CAS  Google Scholar 

  • Jordan JA, Durso MB (2005) Real-time polymerase chain reaction for detecting bacterial DNA directly from blood of neonates being evaluated for sepsis. J Mol Diagn 7(5):575–581

    Article  CAS  Google Scholar 

  • Kirschner P, Springer B, Vogel U, Meier A, Wrede A, Kiekenbeck M, Bange F, Böttger E (1993) Genotypic identification of mycobacteria by nucleic acid sequence determination: report of a 2-year experience in a clinical laboratory. J Clin Microbiol 31(11):2882–2889

    CAS  Google Scholar 

  • Kox L, Van Leeuwen J, Knijper S, Jansen H, Kolk A (1995) PCR assay based on DNA coding for 16S rRNA for detection and identification of mycobacteria in clinical samples. J Clin Microbiol 33(12):3225–3233

    CAS  Google Scholar 

  • Liébana E, Aranaz A, Francis B, Cousins D (1996) Assessment of genetic markers for species differentiation within the Mycobacterium tuberculosis complex. J Clin Microbiol 34(4):933–938

    Google Scholar 

  • Maurya A, Kant S, Nag V, Kushwaha R, Dhole T (2012) Detection of 123 bp fragment of insertion element IS6110 Mycobacterium tuberculosis for diagnosis of extrapulmonary tuberculosis. Indian J Med Microbiol 30(2):182

    Article  CAS  Google Scholar 

  • Muldrew KL, Simpson JF, Stratton CW, Tang Y-W (2005) Molecular diagnosis of necrotizing fasciitis by 16S rRNA gene sequencing and superantigen gene detection. J Mol Diagn 7(5):641–645

    Article  CAS  Google Scholar 

  • Neonakis I, Gitti Z, Petinaki E, Maraki S, Spandidos D (2007) Evaluation of the GenoType MTBC assay for differentiating 120 clinical Mycobacterium tuberculosis complex isolates. Eur J Clin Microbiol Infect Dis 26(2):151–152

    Article  CAS  Google Scholar 

  • Niemann S, Harmsen D, Rüsch-Gerdes S, Richter E (2000) Differentiation of clinical Mycobacterium tuberculosis complex isolates by gyrB DNA sequence polymorphism analysis. J Clin Microbiol 38(9):3231–3234

    CAS  Google Scholar 

  • Niesters HG (2001) Quantitation of viral load using real-time amplification techniques. Methods 25(4):419–429

    Article  CAS  Google Scholar 

  • Parsons LM, Brosch R, Cole ST, Somoskövi Á, Loder A, Bretzel G, Van Soolingen D, Hale YM, Salfinger M (2002) Rapid and simple approach for identification of Mycobacterium tuberculosis complex isolates by PCR-based genomic deletion analysis. J Clin Microbiol 40(7):2339–2345

    Article  CAS  Google Scholar 

  • Pinsky BA, Banaei N (2008) Multiplex real-time PCR assay for rapid identification of Mycobacterium tuberculosis complex members to the species level. J Clin Microbiol 46(7):2241–2246

    Article  CAS  Google Scholar 

  • Qian Q, Tang Y-W, Kolbert CP, Torgerson CA, Hughes JG, Vetter EA, Harmsen WS, Montgomery SO, Cockerill FR, Persing DH (2001) Direct identification of bacteria from positive blood cultures by amplification and sequencing of the 16S rRNA gene: evaluation of BACTEC 9240 instrument true-positive and false-positive results. J Clin Microbiol 39(10):3578–3582

    Article  CAS  Google Scholar 

  • Qin L, Zheng R, Fan C, Cai J, Liu Z, Wang J, Lu J, Jin R, Yang H, Cui Z (2010) Identification and evaluation of a new nucleic acid amplification test target for specific detection of Mycobacterium tuberculosis. Clin Chem Lab Med 48(10):1501–1505

    Article  CAS  Google Scholar 

  • Richter E, Weizenegger M, Rüsch-Gerdes S, Niemann S (2003) Evaluation of genotype MTBC assay for differentiation of clinical Mycobacterium tuberculosis complex isolates. J Clin Microbiol 41(6):2672–2675

    Article  CAS  Google Scholar 

  • Roth A, Fischer M, Hamid ME, Michalke S, Ludwig W, Mauch H (1998) Differentiation of phylogenetically related slowly growing mycobacteria based on 16S-23S rRNA gene internal transcribed spacer sequences. J Clin Microbiol 36(1):139–147

    CAS  Google Scholar 

  • Somoskovi A, Dormandy J, Rivenburg J, Pedrosa M, McBride M, Salfinger M (2008) Direct comparison of the genotype MTBC and genomic deletion assays in terms of ability to distinguish between members of the Mycobacterium tuberculosis complex in clinical isolates and in clinical specimens. J Clin Microbiol 46(5):1854–1857

    Article  CAS  Google Scholar 

  • Sreevatsan S, Pan X, Stockbauer KE, Connell ND, Kreiswirth BN, Whittam TS, Musser JM (1997) Restricted structural gene polymorphism in the Mycobacterium tuberculosis complex indicates evolutionarily recent global dissemination. Proc Natl Acad Sci USA 94(18):9869–9874

    Article  CAS  Google Scholar 

  • Stránská R, Schuurman R, de Vos M, van Loon AM (2004) Routine use of a highly automated and internally controlled real-time PCR assay for the diagnosis of herpes simplex and varicella-zoster virus infections. J Clin Virol 30(1):39–44

    Article  Google Scholar 

  • Talbot EA, Williams DL, Frothingham R (1997) PCR identification of Mycobacterium bovis BCG. J Clin Microbiol 35(3):566–569

    CAS  Google Scholar 

  • Tang Y-W, Meng S, Li H, Stratton CW, Koyamatsu T, Zheng X (2004) PCR enhances acid-fast bacillus stain-based rapid detection of Mycobacterium tuberculosis. J Clin Microbiol 42(4):1849–1850

    Article  Google Scholar 

  • van Soolingen D, van der Zanden AG, de Haas PE, Noordhoek GT, Kiers A, Foudraine NA, Portaels F, Kolk AH, Kremer K, van Embden JD (1998) Diagnosis of Mycobacterium microtiinfections among humans by using novel genetic markers. J Clin Microbiol 36(7):1840–1845

    Google Scholar 

  • Viana-Niero C, De Haas P, Van Soolingen D, Leao S (2004) Analysis of genetic polymorphisms affecting the four phospholipase C (plc) genes in Mycobacterium tuberculosis complex clinical isolates. Microbiology 150(4):967–978

    Article  CAS  Google Scholar 

  • Yam W-C, Yuen K-Y, Kam S-Y, Yiu L-S, Chan K-S, Leung C–C, Tam C-M, Ho P-O, Yew W–W, Seto W-H (2006) Diagnostic application of genotypic identification of mycobacteria. J Med Microbiol 55(5):529–536

    Article  CAS  Google Scholar 

  • Yang S, Rothman RE (2004) PCR-based diagnostics for infectious diseases: uses, limitations, and future applications in acute-care settings. Lancet Infect Dis 4(6):337–348

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the National Institutes for Food and Drug Control, Guozhi Wang and Baowen Chen for their generous providing of the DNA of mycobacteria. This study was supported by the grants from Project Supported by the Scientific and Technological Research Program of Chongqing Municipal Education Commission (Grant No. KJ120318), the National Natural Science Foundation of China (No. 81101216), and the Natural Science Foundation of Chongqing (No. cstc2012jjA10009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenchun Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 239 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, J., Wang, Y., Li, D. et al. An efficient alternative marker for specific identification of Mycobacterium tuberculosis . World J Microbiol Biotechnol 30, 2189–2197 (2014). https://doi.org/10.1007/s11274-014-1638-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-014-1638-8

Keywords

Navigation