Heat treatment induced bacterial changes in irrigation water and their implications for plant disease management

  • W. HaoEmail author
  • C. X. Hong
Original Paper


A new heat treatment for recycled irrigation water using 48 °C for 24 h to inactivate Phytophthora and bacterial plant pathogens is estimated to reduce fuel cost and environmental footprint by more than 50 % compared to current protocol (95 °C for 30 s). The objective of this study was to determine the impact of this new heat treatment temperature regime on bacterial community structure in water and its practical implications. Bacterial communities in irrigation water were analyzed before and after heat treatment using both culture-dependent and -independent strategies based on the 16S ribosomal DNA. A significant shift was observed in the bacterial community after heat treatment. Most importantly, bacteria with biological control potential—Bacillus and Paenibacillus, and Pseudomonas species became more abundant at both 48 and 42 °C. These findings imply that the new heat treatment procedure not only controls existing plant pathogens but also may make the heat-treated irrigation water a more antagonistic environment against plant pathogens, promoting sustainable disease management.


Biological control activity Bacillus Colony PCR–SSCP Paenibacillus PCR–DGGE Pseudomonas 



This work was supported by a grant from the USDA National Institute of Food and Agriculture—Specialty Crop Research Initiative (Agreement #: 2010-51181-21140). We would like to thank Drs. Boris Vinatzer, Anton Baudoin, Erik Stromberg, Michael Benson, Giovanni Cafà, and Ping Kong for their valuable advice during this study, and we also would like to thank Patricia Richardson for assisting with water sampling and proofreading this manuscript.

Supplementary material

11274_2013_1583_MOESM1_ESM.docx (15 kb)
Supplementary material 1 (DOCX 15 kb)
11274_2013_1583_MOESM2_ESM.docx (36 kb)
Supplementary material 2 (DOCX 36 kb)


  1. Baker KF (1962) Principles of heat treatment of soil and planting material. J Aust Inst Agric Sci 28(2):118–126Google Scholar
  2. Baker KF, Matkin OA (1978) Dectection and control of pathogens in water. Ornamentals Northwest April–May:12–13Google Scholar
  3. Beatty PH, Jensen SE (2002) Paenibacillus polymyxa produces fusaricidin-type antifungal antibiotics active against Leptosphaeria maculans, the causative agent of blackleg disease of canola. Can J Microbiol 48(2):159–169. doi: 10.1139/w02-002 CrossRefGoogle Scholar
  4. Beidler JL, Hilliard PR, Rill RL (1982) Ultrasensitive staining of nucleic acids with silver. Anal Biochem 126:374–380CrossRefGoogle Scholar
  5. Bosshard PP, Zbinden R, Altwegg M (2002) Paenibacillus turicensis sp. nov., a novel bacterium harbouring heterogeneities between 16S rRNA genes. Int J Syst Evol Microbiol 52:2241–2249. doi: 10.1099/ijs.0.02105-0 CrossRefGoogle Scholar
  6. Cayanan DF, Dixon M, Zheng YB, Llewellyn J (2009) Response of container-grown nursery plants to chlorine used to disinfest irrigation water. HortScience 44(1):164–167Google Scholar
  7. Chung YR, Kim CH, Hwang I, Chun J (2000) Paenibacillus koreensis sp. nov., a new species that produces an iturin-like antifungal compound. Int J Syst Evol Microbiol 50:1495–1500CrossRefGoogle Scholar
  8. Clarke KR, Ainsworth M (1993) A method of linking multivariate community structure to environmental variables. Mar Ecol Prog Ser 92:204–219CrossRefGoogle Scholar
  9. Deng Y, Lu ZX, Lu FX, Wang Y, Bie XM (2011) Study on an antimicrobial protein produced by Paenibacillus polymyxa JSa-9 isolated from soil. World J Microbiol Biotechnol 27(8):1803–1807. doi: 10.1007/s11274-010-0638-6 CrossRefGoogle Scholar
  10. Duijff BJ, Meijer JW, Bakker PAHM, Schippers B (1993) Siderophore-mediated competition for iron and induced resistance in the suppression of Fusarium wilt of carnation by fluorescent Pseudomonas spp. Neth J Plant Path 99(5–6):277–289. doi: 10.1007/bf01974309 CrossRefGoogle Scholar
  11. Geldreich EE (1996) Pathogenic agents in freshwater resources. Hydrological Process 10(2):315–333CrossRefGoogle Scholar
  12. Hahn MW, Lunsdorf H, Wu QL, Schauer M, Hofle MG, Boenigk J, Stadler P (2003) Isolation of novel ultramicrobacteria classified as Actinobacteria from five freshwater habitats in Europe and Asia. Appl Environ Microbiol 69(3):1442–1451. doi: 10.1128/aem.69.3.1442- 1451.2003CrossRefGoogle Scholar
  13. Hahn MW, Stadler P, Wu QL, Pockl M (2004) The filtration-acclimatization method for isolation of an important fraction of the not readily cultivable bacteria. J Microbiol Methods 57(3):379–390. doi: 10.1016/j.mimet.2004.02.004 CrossRefGoogle Scholar
  14. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  15. Hammer O, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4(1):1–9Google Scholar
  16. Hao W, Ahonsi MO, Vinatzer BA, Hong CX (2012) Inactivation of Phytophthora and bacterial species in water by a potential energy-saving heat treatment. Eur J Plant Pathol 134(2):357–365. doi: 10.1007/s10658-012-9994-4 CrossRefGoogle Scholar
  17. Holmberg AIJ, Melin P, Levenfors JP, Sundh I (2009) Development and evaluation of SCAR markers for a Pseudomonas brassicacearum strain used in biological control of snow mould. Biol Control 48(2):181–187. doi: 10.1016/j.biocontrol.2008.10.016 CrossRefGoogle Scholar
  18. Hong CX, Moorman GW (2005) Plant pathogens in irrigation water: challenges and opportunities. Crit Rev Plant Sci 24(3):189–208. doi: 10.1080/07352680591005838 CrossRefGoogle Scholar
  19. Imhoff JF (2006) The phototrophic alpha-proteobacteria. Prokaryotes: a handbook on the biology of bacteria, Vol 5, Third Edition: Proteobacteria: alpha and beta subclasses. Springer, New York. doi: 10.1007/0-387-30745-1_2
  20. Jung H-K, Kim S-D (2003) Purification and characterization of an antifungal antibiotic from Bacillus megaterium KL 39, a biocontrol agent of red-papper phytophthora blight disease. Korean J Microbiol Biotechnol 31(3):235–241Google Scholar
  21. Kawai M, Matsutera E, Kanda H, Yamaguchi N, Tani K, Nasu M (2002) 16S ribosomal DNA-based analysis of bacterial diversity in purified water used in pharmaceutical manufacturing processes by PCR and denaturing gradient gel electrophoresis. Appl Environ Microbiol 68(2):699–704CrossRefGoogle Scholar
  22. Kong P, Hong CX, Richardson PA, Gallegly ME (2003) Single-strand-conformation polymorphism of ribosomal DNA for rapid species differentiation in genus Phytophthora. Fungal Genet Biol 39(3):238–249. doi: 10.1016/s1087-1845(03)00052-5 CrossRefGoogle Scholar
  23. Loper JE, Kobayashi DY, Paulsen IT (2007) The genomic sequence of Pseudomonas fluorescens Pf-5: insights into biological control. Phytopathology 97(2):233–238. doi: 10.1094/phyto-97-2-0233 CrossRefGoogle Scholar
  24. Loper JE, Henkels MD, Shaffer BT, Valeriote FA, Gross H (2008) Isolation and identification of rhizoxin analogs from Pseudomonas fluorescens Pf-5 by using a genomic mining strategy. Appl Environ Microbiol 74(10):3085–3093. doi: 10.1128/aem.02848-07 CrossRefGoogle Scholar
  25. Maier RM, Soberon-Chavez G (2000) Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications. Appl Microbiol Biotechnol 54(5):625–633CrossRefGoogle Scholar
  26. Martin NI, Hu HJ, Moake MM, Churey JJ, Whittal R, Worobo RW, Vederas JC (2003) Isolation, structural characterization, and properties of mattacin (Polymyxin M), a cyclic peptide antibiotic produced by Paenibacillus kobensis M. J Biol Chem 278(15):13124–13132. doi: 10.1074/jbc.M212364200 CrossRefGoogle Scholar
  27. McPherson GM, Harriman MR, Pattison D (1995) The potential for spread of root diseases in recirculating hydroponic systems and their control with disinfection. Meded Fac Landbouwkd Toegep Biol Wet Univ Gent 60(28):371–379Google Scholar
  28. Newton RJ, Jones SE, Eiler A, McMahon KD, Bertilsson S (2011) A guide to the natural history of freshwater lake bacteria. Microbiol Mol Biol Rev 75:14–49. doi: 10.1128/MMBR.00028-10 CrossRefGoogle Scholar
  29. Nubel U, Engelen B, Felske A, Snaidr J, Wieshuber A, Amann RI, Ludwig W, Backhaus H (1996) Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J Bacteriol 178(19):5636–5643Google Scholar
  30. Paulitz TC, Belanger RR (2001) Biological control in greenhouse system. Annu Rev Phytopathol 39:103–133CrossRefGoogle Scholar
  31. Peixoto RS, Coutinho HLD, Rumjanek NG, Macrae A, Rosado AS (2002) Use of rpo B and 16S rRNA genes to analyse bacterial diversity of a tropical soil using PCR and DGGE. Lett Appl Microbiol 35(4):316–320CrossRefGoogle Scholar
  32. Piuri M, Sanchez-Rivas C, Ruzal SM (1998) A novel antimicrobial activity of a Paenibacillus polymyxa strain isolated from regional fermented sausages. Lett Appl Microbiol 27(1):9–13CrossRefGoogle Scholar
  33. Punja ZK (1997) Comparative efficacy of bacteria, fungi, and yeasts as biological control agents for diseases of vegetable crops. Can J Plant Pathol 19(3):315–323CrossRefGoogle Scholar
  34. Raupach GS, Kloepper JW (1998) Mixtures of plant growth-promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology 88:1158–1164CrossRefGoogle Scholar
  35. Romero D, Perez-Garcia A, Rivera ME, Cazorla FM, de Vicente A (2004) Isolation and evaluation of antagonistic bacteria towards the cucurbit powdery mildew fungus Podosphaera fusca. Appl Microbiol Biotechnol 64(2):263–269CrossRefGoogle Scholar
  36. Runia WT (1995) A review of possibilities for disinfection of recirculation water from soilless cultures. Acta Horticulturae 382:221–228Google Scholar
  37. Runia WT, Vanos EA, Bollen GJ (1988) Disinfection of drainwater from soilless cultures by heat-treatment. Neth J Agric Sci 36(3):231–238Google Scholar
  38. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  39. Santoyo G, del Carmen Orozco-Mosqueda M, Govindappa M (2012) Mechanisms of biocontrol and plant growth-promoting activity in soil bacterial species of Bacillus and Pseudomonas: a review. Biocontrol Sci Technol 22(8):855–872. doi: 10.1080/09583157.2012.694413 CrossRefGoogle Scholar
  40. Scheldeman P, Goossens K, Rodriguez-Diaz M, Pil A, Goris J, Herman L, De Vos P, Logan NA, Heyndrickx M (2004) Paenibacillus lactis sp. nov., isolated from raw and heat-treated milk. Int J Syst Evol Microbiol 54:885–891. doi: 10.1099/ijs.0.02822-0 CrossRefGoogle Scholar
  41. Schumann GL (1991) Plant diseases: their biology and social impact. APS Press, St. Paul, MNGoogle Scholar
  42. Schumann GL, D’Arcy CJ (2006) Essential plant pathology, 1st edn. APS Press, St. Paul, MNGoogle Scholar
  43. Shaheen M, Li JR, Ross AC, Vederas JC, Jensen SE (2011) Paenibacillus polymyxa PKB1 produces variants of polymyxin B-type antibiotics. Chem Biol 18(12):1640–1648. doi: 10.1016/j.chembiol.2011.09.017 CrossRefGoogle Scholar
  44. Singh PP, Shin YC, Park CS, Chung YR (1999) Biological control of fusarium wilt of cucumber by chitinolytic bacteria. Phytopathology 89(1):92–99. doi: 10.1094/phyto.1999.89.1.92 CrossRefGoogle Scholar
  45. Stadtwald-Demchick R, Turner FR, Gest H (1990) Physiological properties of the thermotolerant photosynthetic bacterium, Rhodospirillum centenum. FEMS Microbiol Lett 67(1–2):139–143. doi: 10.1016/0378-1097(90)90183-q CrossRefGoogle Scholar
  46. Stanghellini ME, Rasmussen SL (1994) Hydroponics—a solution for zoosporic pathogens. Plant Dis 78(12):1129–1138CrossRefGoogle Scholar
  47. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial-DNA in humans and chimpanzees. Mol Biol Evol 10(3):512–526Google Scholar
  48. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefGoogle Scholar
  49. Thomson SV, Allen RM (1974) Occurrence of Phytophthora species and other potential plant pathogens in recycled irrigation water. Plant Dis Rep 58:945–949Google Scholar
  50. Toze S (1999) PCR and the detection of microbial pathogens in water and wastewater. Water Res 33(17):3545–3556CrossRefGoogle Scholar
  51. Toze S (2006) Water reuse and health risks—real vs. perceived. Desalination 187(1–3):41–51. doi: 10.1016/j.desal.2005.04.066 CrossRefGoogle Scholar
  52. Tsuji A, Kaneko Y, Takahashi K, Ogawa M, Goto S (1982) The effect of temperature and pH on the growth of eight enteric and nine glucose non-fermenting species of gram-negative rods. Microbiol Immunol 26(1):15–24CrossRefGoogle Scholar
  53. Tupinamba G, da Silva AJR, Alviano CS, Souto-Padron T, Seldin L, Alviano DS (2008) Antimicrobial activity of Paenibacillus polymyxa SCE2 against some mycotoxin-producing fungi. J Appl Microbiol 105(4):1044–1053. doi: 10.1111/j.1365-2672.2008.03844.x CrossRefGoogle Scholar
  54. van Os EA (1999) Closed soilless growing systems: a sustainable solution for Dutch greenhouse horticulture. Water Sci Technol 39(5):105–112CrossRefGoogle Scholar
  55. Viji G, Uddin W, Romaine CP (2003) Suppression of gray leaf spot (blast) of perennial ryegrass turf by Pseudomonas aeruginosa from spent mushroom substrate. Biol Control 26(3):233–243. doi: 10.1016/s1049-9644(02)00170-6 CrossRefGoogle Scholar
  56. Warth AD (1978) Relationship between heat-resistance of spores and optimum and maximum growth temperatures of Bacillus species. J Bacteriol 134(3):699–705Google Scholar
  57. Wilson M, Epton HAS, Sigee DC (1992) Biological control of fire blight of hawthore (Crataegus monogyna) with fluorescent Pseudomonas spp under protected conditions. J Phytopathol 136(1):16–26. doi: 10.1111/j.1439-0434.1992.tb01277.x CrossRefGoogle Scholar
  58. Yang C-H, Menge JA, Cooksey DA (1994) Mutations affecting hyphal colonization and pyoverdine production in Pseudomonads antagonistic toward Phytophthora parasitica. Appl Environ Microbiol 60(2):473–481Google Scholar
  59. Yoshida S, Hiradate S, Tsukamoto T, Hatakeda K, Shirata A (2001) Antimicrobial activity of culture filtrate of Bacillus amyloliquefaciens RC-2 isolated from mulberry leaves. Phytopathology 91(2):181–187. doi: 10.1094/phyto.2001.91.2.181 CrossRefGoogle Scholar
  60. Zhao S, Pan WB, Ma C (2012) Stimulation and inhibition effects of algae-lytic products from Bacillus cereus strain L7 on Anabaena flos-aquae. J Appl Phycol 24(5):1015–1021. doi: 10.1007/s10811-011-9725-9 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Hampton Roads Agricultural Research and Extension CenterVirginia TechVirginia BeachUSA

Personalised recommendations