Skip to main content

Advertisement

Log in

UVC-mutagenesis in acetogens: resistance to methanol, ethanol, acetone, or n-butanol in recombinants with tailored genomes as the step in engineering of commercial biocatalysts for continuous CO2/H2 blend fermentations

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Time- and cost-efficient six-step UVC-mutagenesis was developed and validated to generate acetogen mutants with preliminary reduced genomes to prevent product inhibition in the to-be-engineered commercial biocatalysts. Genome reduction was performed via elimination of pta, ack, spo0A, spo0J and some pro-phage genes. UVC-mutants such as Clostridium sp. MT1784RG, Clostridium sp. MT653RG, Clostridium sp. MT896RG, and Clostridium sp. MT1962RG (all 4 share 97 % DNA homology with Clostridium ljungdahlii ATCC 55383) were selected based on resistance to methanol (3 M), ethanol (3.6 M), acetone (2.5 M), or n-butanol (0.688 M), respectively. As a part of the biocatalyst engineering algorithm, genome reduction step was associated with integration of attTn7 recognition sequence to the chromosomes of each of the above strains to prepare the defined integration sites for future integration of multi-copy synthetic operons encoding biosynthesis of methanol, ethanol, acetone or n-butanol. Reduced genome mutants had cell duplication times decreased compared to the same for the respective parental strains. All groups of mutants had decreased share of palmitic (C16:0) and increased share of oleic (C18:1) acids along with detection of isopropylstearate (C20) compared to the parental strains. Mutants resistant to acetone and n-butanol also had monounsaturated fatty acid (C20:1) not found in parental strains. Cyclopropane fatty acid (C21) was identified only in n-butanol resistant mutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Berzin V, Tyurin M (2012) Acetogen biocatalyst Clostridium sp. MTEtOH871 engineered with our proprietary electrotransformation technology and equipment: continuous synthesis gas fermentation for selective ethanol production. J Biotech Res 4:54–64

    CAS  Google Scholar 

  • Berzin V, Kiriukhin M, Tyurin M (2012a) Selective production of acetone during continuous synthesis gas fermentation by engineered biocatalyst Clostridium sp. MAceT113. Lett Appl Microbiol. doi:10.1111/j.1472-765X.2012.03272.x

    Google Scholar 

  • Berzin V, Kiriukhin M, Tyurin M (2012b) Elimination of acetate production to improve ethanol yield during continuous synthesis gas fermentation by engineered biocatalyst Clostridium sp. MTEtOH550. Appl Biochem Biotechnol 167(2):338–347. doi:10.1007/s12010-012-9697-5

    Article  CAS  Google Scholar 

  • Berzin V, Kiriukhin M, Tyurin M (2013a) Cre-lox66/lox71-based elimination of phosphotransacetylase or acetaldehyde dehydrogenase shifted carbon flux in acetogen rendering selective overproduction of ethanol or acetate. Appl Biochem Biotechnol 195(3):181–188. doi:10.1007/s12010-012-9864-8

    CAS  Google Scholar 

  • Berzin V, Kiriukhin M, Tyurin M (2013b) Selective n-butanol production by Clostridium sp. MTButOH1365 during continuous synthesis gas fermentation due to expression of synthetic thiolase, 3-hydroxy butyryl-CoA dehydrogenase, crotonase, butyryl-CoA dehydrogenase, butyraldehyde dehydrogenase and NAD-dependent butanol dehydrogenase. Appl Biochem Biotechnol 169(3):950–959. doi:10.1007/s12010-012-0060-7

    Article  CAS  Google Scholar 

  • Berzin V, Kiriukhin M, Tyurin M (2013c) “Curing” of plasmid DNA in acetogen using microwave or applying an electric pulse improves cell growth and metabolite production as compared to the plasmid-harboring strain. Arch Microbiol 195(3):181–188. doi:10.1007/s00203-012-0862-6

    Article  CAS  Google Scholar 

  • Brock TD (1989) Evolutionary relationships of the autotrophic bacteria. In: Schlegel HG, Bowien B (eds) Autotrophic bacteria. Science Tech, Madison, WI, pp 499–512

    Google Scholar 

  • Chiou CT (2003) Partition and adsorption of organic contaminants in environmental systems. Wiley, New York, p 274

    Google Scholar 

  • Demain AL (2009) Biosolutions to the energy problem. J Ind Microbiol Biotechnol 36(3):319–332

    Article  CAS  Google Scholar 

  • Gaddy JL, Arora D D, Ko C-W, Phillips J R, Basu R, Wikstrom CV, Clausen EC (2001) Methods for increasing the production of ethanol from microbial fermentation. US Patent 7285402

  • Ikehata H, Ono T (2011) The mechanisms of UV mutagenesis. J Radiat Res 52:115–125

    Article  CAS  Google Scholar 

  • Kiriukhin M, Tyurin M (2013) Mevalonate production by engineered acetogen biocatalyst during continuous fermentation of syngas or CO2/H2 blend. Bioprocess Biosyst Eng. doi:10.1007/s00449-013-0991-6

    Google Scholar 

  • Konstantinova NIu, Tiurin MV, Voropaeva EA, Shenderov BA (1994) Bacteria of the genus Eubacterium and their participation in steroid metabolism. Zh Mikrobiol Epidemiol Immunobiol 2:114–119

    Google Scholar 

  • Li SY, Srivastava R, Suib SL, Li Y, Parnas RS (2011) Performance of batch, fed-batch, and continuous A–B–E fermentation with pH-control. Bioresour Technol 102(5):4241–4250

    Article  CAS  Google Scholar 

  • Lovley DR, Nevin KP (2013) Electrobiocommodities: powering microbial production of fuels and commodity chemicals from carbon dioxide with electricity. Curr Opin Biotechnol 24(3):385–390. doi:10.1016/j.copbio.2013.02.012

    Article  CAS  Google Scholar 

  • Miggiano R, Casazza V, Garavaglia S, Ciaramella M, Perugino G, Rizzi M, Rossi F (2013) Biochemical and structural studies of the Mycobacterium tuberculosis O6-methylguanine methyltransferase and mutated variants. J Bacteriol 195(12):2728–2736. doi:10.1128/JB.02298-12

    Article  CAS  Google Scholar 

  • Müller V (2003) Energy conservation in acetogenic bacteria. Appl Environ Microbiol 69(11):6345–6353. doi:10.1128/AEM.69.11.6345- 6353.2003

    Article  CAS  Google Scholar 

  • Nakashima N, Goh S, Good L, Tamura T (2012) Multiple-gene silencing using antisense RNAs in Escherichia coli. Methods Mol Biol 815:307–319. doi:10.1007/978-1-61779-424-7_23

    Article  CAS  Google Scholar 

  • Nemecek-Marshall M, Wojciechowski C, Wagner WP, Fall R (1999) Acetone formation in the Vibrio family: a new pathway for bacterial leucine catabolism. J Bacteriol 181(24):7493–7499

    CAS  Google Scholar 

  • Nevin KP, Hensley SA, Franks AE, Summers ZM, Ou J, Woodard TL, Snoeyenbos-West OL, Lovley DR (2011) Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms. Appl Environ Microbiol 77(9):2882–2886. doi:10.1128/AEM.02642-10

    Article  CAS  Google Scholar 

  • Nie H, Zhang T, Cui M, Lu H, Lovley DR, Russell TP (2013) Improved cathode for high efficient microbial-catalyzed reduction in microbial electrosynthesis cells. Phys Chem Chem Phys 15(34):14290–14294. doi:10.1039/c3cp52697f

    Article  CAS  Google Scholar 

  • Ross SM (2000) Introduction to probability and statistics for engineers and scientists, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Seaton SC, Silby MW, Levy SB (2013) Pleiotropic effects of GacA on Pseudomonas fluorescens Pf0-1 in vitro and in soil. Appl Environ Microbiol 79(17):5405–5410. doi:10.1128/AEM.00819-13

    Article  CAS  Google Scholar 

  • Simon SA, Gutknecht J (1980) Solubility of carbon dioxide in lipid bilayer membranes and organic solvents. Biochim Biophys Acta 596(3):352–358

    Article  CAS  Google Scholar 

  • Tanner RS, Miller LM, Yang D (1993) Clostridium ljungdahlii sp. nov., an acetogenic species in clostridial rRNA homology group I. Int J Syst Bacteriol 43(2):232–236

    Article  CAS  Google Scholar 

  • Tremblay PL, Zhang T, Dar SA, Leang C, Lovley DR (2012) The Rnf complex of Clostridium ljungdahlii is a proton-translocating ferredoxin: NAD+ oxidoreductase essential for autotrophic growth. mBio 4(1):e00406–e00412. doi:10.1128/mBio.00406-12

    Article  CAS  Google Scholar 

  • Tyurin M (1992) Electrotransfrmation generator and methods of its use thereof. Russian Patent 2005776

  • Tyurin M, Kiriukhin M (2013a) Selective methanol or formate production during continuous CO2 fermentation by the acetogen biocatalysts engineered via integration of synthetic pathways using Tn7-tool. World J Microbiol Biotechnol. doi:10.1007/s11274-013-1324-2

    Google Scholar 

  • Tyurin M, Kiriukhin M (2013b) Expression of amplified synthetic ethanol pathway integrated using Tn7-tool and powered at the expense of eliminated pta, ack, spo0A and spo0J during continuous syngas or CO2/H2 blend fermentation. J Appl Microbiol. doi:10.1111/jam.12123

    Google Scholar 

  • Tyurin M, Kiriukhin M (2013c) 2,3-Butanediol production by engineered acetogen biocatalyst during continuous fermentation of syngas or CO2/H2 blend. Appl Biochem Biotechnol. doi:10.1007/s12010-013-0285-0

    Google Scholar 

  • Tyurin MV, Doroshenko VG, Oparina NYu (1997) Electrofusion of Escherichia coli cells. Membr Cell Biol 11(1):121–129

    CAS  Google Scholar 

  • Tyurin M, Kiryukhin M, Berzin V (2012) Electrofusion of untreated cells of the newly isolated acetogen Clostridium sp. MT351 with integrated in the chromosome erm(B) or cat leading to the combined presence of these antibiotic resistance genes in the chromosome of the electrofusion products. J Biotech Res 4:1–12

    CAS  Google Scholar 

  • Young KD (2006) The selective value of bacterial shape. Microbiol Mol Biol Rev 70(3):660–703. doi:10.1128/MMBR.00001-06

    Article  Google Scholar 

Download references

Acknowledgments

The research was supported by the angel funds of MT family friends. Biocatalyst Gurus, Inc,. is the sole distributor of the electroporation and electrofusion equipment, custom multi-fermentor modules and MT254UVnator: www.syngasbiofuelsenergy.com.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Tyurin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiriukhin, M., Tyurin, M. & Gak, E. UVC-mutagenesis in acetogens: resistance to methanol, ethanol, acetone, or n-butanol in recombinants with tailored genomes as the step in engineering of commercial biocatalysts for continuous CO2/H2 blend fermentations. World J Microbiol Biotechnol 30, 1559–1574 (2014). https://doi.org/10.1007/s11274-013-1579-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-013-1579-7

Keywords

Navigation