Skip to main content
Log in

Effect of copper-induced oxidative stress on sclerotial differentiation and antioxidant properties of Penicillium thomii PT95 strain

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Penicillium thomii PT95 strain was able to form abundant orange, sand-shaped sclerotia in which carotenoids were accumulated. The aim of this work was to determine the effects of copper-induced oxidative stress on the sclerotial differentiation and antioxidant properties of PT95 strain. The results showed that the time of exudates initiation, sclerotial initiation and sclerotial maturation of PT95 strain were advanced in 1–2 days under the copper-induced oxidative stress growth conditions. The analytical results of sclerotial biomass, carotenoids content in sclerotia showed that copper-induced oxidative stress favored the sclerotial differentiation and biosynthesis of carotenoids. Under the copper-induced oxidative stress growth conditions, the total phenolics content and DPPH free radical scavenging activity of sclerotia of this fungus were decreased as compared with the control. However, the oxidative stress induced by a lower amount of CuSO4 in media could enhance significantly the reducing power of sclerotia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • An GH, Schuman DB, Johnson EA (1989) Isolation of Phaffia rhodozyma mutants with increased astaxanthin content. Appl Environ Microbiol 55:116–124

    CAS  Google Scholar 

  • Burton WG, Ingold UK (1984) β-Carotene: an unusual type of lipid antioxidant. Science 224:569–573

    Article  CAS  Google Scholar 

  • Cuyers AJ, Vangronsveld H, Clijsters WC (2000) Biphasic effect of copper on the ascorbate glutathione pathway in primary leaves of Phaseolus vulgaris seedlings during the early stages of metal assimilation. Physiol Plant 110:512–517

    Article  Google Scholar 

  • Espín JC, García-Conesa MT, Tomás-Barberán FA (2007) Nutraceuticals: facts and fiction. Phytochemistry 68:2986–3008

    Article  CAS  Google Scholar 

  • Evans JD, Aronstein K, Chen YP et al (2006) Immune pathways and bees mechanisms in honey bees Apis mellifera. Insect Mol Biol 15:645–656

    Article  CAS  Google Scholar 

  • Fernandes JC, Henrique FS (1991) Biochemical, physiological and structural effects of excess copper in plants. Bot Rev 57:246–273

    Article  Google Scholar 

  • Finkel T (2003) Oxidant signals and oxidative stress. Curr Opin Cell Biol 15:247–254

    Article  CAS  Google Scholar 

  • Georgiou CD (1997) Lipid peroxidation in Sclerotium rolfsii: a new look into the mechanism of sclerotial biogenesis in fungi. Mycol Res 101:460–464

    Article  CAS  Google Scholar 

  • Georgiou CD, Tairis N, Polycratis A (2001) Production of β-carotene by Sclerotinia sclerotiorum and its role in sclerotium differentiation. Mycol Res 105:1110–1115

    Article  CAS  Google Scholar 

  • Georgiou CD, Patsoukis N, Papapostolou I et al (2006) Sclerotial metamorphosis in filamentous fungi is induced by oxidative stress. Integr Comp Biol 46:691–712

    Article  CAS  Google Scholar 

  • Gessler NN, Aver’yanov AA, Belozerskaya TA (2007) Reactive oxygen species in regulation of fungal development. Biochemistry (Moscow) 72:1091–1109

    Article  CAS  Google Scholar 

  • Han JR (1998) Sclerotia growth and carotenoid production of Penicillium sp. PT95 during solid-state fermentation of corn meal. Biotechnol Lett 20:1063–1065

    Article  CAS  Google Scholar 

  • Han JR, Wang XJ, Yuan XE (1998) Studies on the production of carotenoids in sclerotia of PT95 strain of Penicillium. Microbiology 25:319–321

    CAS  Google Scholar 

  • Han JR, Zhao WJ, Gao YY et al (2005) Effect of oxidative stress and exogenous β-carotene on sclerotial differentiation and carotenoid yield of Penicillium sp. PT95. Lett Appl Microbiol 40:412–417

    Article  CAS  Google Scholar 

  • Kiritsakis K, Kontominas MG, Kontogiorgis C et al (2010) Composition and antioxidant activity of olive leaf extracts from Greek olive cultivars. AOCS 87:369–376

    CAS  Google Scholar 

  • Kuda T, Tsunekawa M, Goto H et al (2005) Antioxidant properties of four edible algae harvested in the Noto Peninsula. Japan J Food Compost Anal 18:625–633

    Article  CAS  Google Scholar 

  • Lee YL, Ming-Tsung Y, Mau JL (2007) Antioxidant properties of various extracts from Hypsizigus marmoreus. Food Chem 104:1–9

    Article  CAS  Google Scholar 

  • Li XL, Cui XH, Han JR (2006) Sclerotial biomass and carotenoid yield of Penicillium sp. PT95 under oxidative growth conditions and in the presence of antioxidant ascorbic acid. J Appl Microbiol 101:725–731

    Article  CAS  Google Scholar 

  • Li HY, Hao ZB, Wang XL et al (2009) Antioxidant activities of extracts and fractions from Lysimachia foenum-graecum Hance. Bioresour Technol 100:970–974

    Article  CAS  Google Scholar 

  • Martins LL, Mourato MP (2006) Effect of excess copper on tomato plants: growth parameters, enzyme activities, chlorophyll, and mineral content. J Plant Nutr 29:2179–2198

    Article  CAS  Google Scholar 

  • McDonald S, Prenzler PD, Autolovich M et al (2001) Phenolic content and antioxidant activity of olive extracts. Food Chem 73:73–84

    Article  CAS  Google Scholar 

  • Murphy A, Taiz L (1997) Correlation between potassium efflux and copper sensitivity in ten Arabidopsis ecotypes. New Phytol 136:211–222

    Article  CAS  Google Scholar 

  • Patsikka E, Kairavuo M, Sersen F et al (2002) Excess copper predisposes photosystem II to photo inhibition in vivo by out competing iron and causing decrease in leaf chlorophyll. Plant Physiol 129:1359–1367

    Article  CAS  Google Scholar 

  • Pitt JI (2000) A laboratory guide to common Penicillium species. Division of Food Processing, North Ryde

    Google Scholar 

  • Ray AA (1985) SAS users guide: statistics. SAS Institute, Cary, NC

    Google Scholar 

  • Shimada K, Fujikawa K, Yahara K et al (1992) Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J Agric Food Chem 40:945–948

    Article  CAS  Google Scholar 

  • Simic GM (1992) Carotenoid free radicals. In: Packer L (ed) Methods in enzymology. Academic Press, New York, pp 444–453

    Google Scholar 

  • Smeets K, Cuypers A, Lambrechts A et al (2005) Induction of oxidative stress and antioxidative mechanisms in Phaseolus vulgaris after Cd application. Plant Physiol Biochem 43:437–444

    Article  CAS  Google Scholar 

  • Soares JR, Dinis TCP, Cunha AP et al (1997) Antioxidant activities of some extracts of Thymus zygis. Free Radic Res 26:469–478

    Article  CAS  Google Scholar 

  • Stratton PS, Liebler CD (1997) Determination of singlet oxygen-specific versus radical-mediated lipid peroxidation in photosensitized oxidation of lipid bilayers: effect of β-carotene and α-tocopherol. Biochemistry 36:12911–12920

    Article  CAS  Google Scholar 

  • Tsuda M, Ootaka R, Ohkura C et al (2010) Loss of Trx-2enhances oxidative stress-dependent phenotypes in Drosophila. FEBS Lett 584:3398–3401

    Article  CAS  Google Scholar 

  • Veluchamy S, Williams B, Kim K et al (2012) The CuZn superoxide dismutase from Sclerotinia sclerotiorum is involved with oxidative stress tolerance, virulence, and oxalate production. PMPP 78:14–23

    Article  CAS  Google Scholar 

  • Wanita A, Lorenz K (1996) Antioxidant potential of 5-n-pentadecylresorcinol. J Food Process Preserv 20:417–429

    Article  Google Scholar 

  • White TJ, Bruns TD, Lee S et al (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ et al (eds) PCR protocols: a guide to methods and applications. Academic Press, New York, pp 315–322

    Google Scholar 

  • Yruela I (2005) Copper in plants. Braz J Plant Physiol 17:145–156

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Support for this research by the Chinese National Natural Science Fund (Grant No. 31070048) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Rong Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, ZQ., Zhao, WJ., Long, DD. et al. Effect of copper-induced oxidative stress on sclerotial differentiation and antioxidant properties of Penicillium thomii PT95 strain. World J Microbiol Biotechnol 30, 1519–1525 (2014). https://doi.org/10.1007/s11274-013-1572-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-013-1572-1

Keywords

Navigation