Advertisement

World Journal of Microbiology and Biotechnology

, Volume 30, Issue 2, pp 757–766 | Cite as

Molecular diversity of the ammonia-oxidizing bacteria community in disused tin-mining ponds located within Kampar, Perak, Malaysia

  • S. L. S. Sow
  • G. Khoo
  • L. K. Chong
  • T. J. Smith
  • P. L. Harrison
  • H. K. A. OngEmail author
Original Paper

Abstract

Disused tin-mining ponds make up a significant amount of water bodies in Malaysia particularly at the Kinta Valley in the state of Perak where tin-mining activities were the most extensive, and these abundantly available water sources are widely used in the field of aquaculture and agriculture. However, the natural ecology and physicochemical conditions of these ponds, many of which have been altered due to secondary post-mining activities, remains to be explored. As ammonia-oxidizing bacteria (AOB) are directly related to the nutrient cycles of aquatic environments and are useful bioindicators of environmental variations, the focus of this study was to identify AOBs associated with disused tin-mining ponds that have a history of different secondary activities in comparison to ponds which were left untouched and remained as part of the landscape. The 16S rDNA gene was used to detect AOBs in the sediment and water sampled from the three types of disused mining ponds, namely ponds without secondary activity, ponds that were used for lotus cultivation and post-aquaculture ponds. When the varying pond types were compared with the sequence and phylogenetic analysis of the AOB clone libraries, both Nitrosomonas and Nitrosospira-like AOB were detected though Nitrosospira spp. was seen to be the most ubiquitous AOB as it was present in all ponds types. However, AOBs were not detected in the sediments of idle ponds. Based on rarefaction analysis and diversity indices, the disused mining pond with lotus culture indicated the highest richness of AOBs. Canonical correspondence analysis indicated that among the physicochemical properties of the pond sites, TAN and nitrite were shown to be the main factors that influenced the community structure of AOBs in these disused tin-mining ponds.

Keywords

Ammonia oxidizing bacteria 16S ribosomal RNA gene Molecular diversity Disused mining ponds Physicochemical properties 

Notes

Acknowledgments

This project is supported by Tunku Abdul Rahman University and a research grant awarded by the Malaysia Toray Science Foundation (09/G23).

Supplementary material

11274_2013_1506_MOESM1_ESM.docx (2.5 mb)
Supplementary material 1 (DOCX 2535 kb)

References

  1. Aakra A, Hesselsoe M, Bakken LR (2000) Surface attachment of ammonia-oxidizing bacteria in soil. Microb Ecol 39(3):222–235. doi: 10.1007/s002480000006 Google Scholar
  2. Ang LH, Ho WM (2002) Afforestation of tin tailings in Malaysia. In: 12th ISCO conference, Beijing. pp 440–445Google Scholar
  3. Arumugam PT (1994) Present utilization and recommendations for management of tin-mine lakes in Malaysia. Intl Assoc Theor Appl Limnol Commun 24:265–272Google Scholar
  4. Bodelier P, Libochant JA, Blom C, Laanbroek HJ (1996) Dynamics of nitrification and denitrification in root-oxygenated sediments and adaptation of ammonia-oxidizing bacteria to low-oxygen or anoxic habitats. Appl Environ Microbiol 62(11):4100–4107Google Scholar
  5. Braak CJF, Šmilauer P (2002) CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (version 4.5). BiometrisGoogle Scholar
  6. Briones AM, Okabe S, Umemiya Y, Ramsing NB, Reichardt W, Okuyama H (2002) Influence of different cultivars on populations of ammonia-oxidizing bacteria in the root environment of rice. Appl Environ Microbiol 68(6):3067–3075CrossRefGoogle Scholar
  7. Calhoun A, King GM (1998) Characterization of root-associated methanotrophs from three freshwater macrophytes: Pontederia cordata, Sparganium eurycarpum, and Sagittaria latifolia. Appl Environ Microbiol 64(3):1099–1105Google Scholar
  8. Cao H, Li M, Hong Y, Gu JD (2011) Diversity and abundance of ammonia-oxidizing archaea and bacteria in polluted mangrove sediment. Syst Appl Microbiol 34(7):513–523. doi: 10.1016/j.syapm.2010.11.023 CrossRefGoogle Scholar
  9. Cebron A, Berthe T, Garnier J (2003) Nitrification and nitrifying bacteria in the lower Seine River and estuary (France). Appl Environ Microbiol 69(12):7091–7100CrossRefGoogle Scholar
  10. Chen GY, Qiu SL, Zhou YY (2009) Diversity and abundance of ammonia-oxidizing bacteria in eutrophic and oligotrophic basins of a shallow Chinese lake (Lake Donghu). Res Microbiol 160(3):173–178CrossRefGoogle Scholar
  11. Coci M (2007) Niche differentiation between ammonia-oxidizing bacteria in aquatic environments. Universiteit Utrecht, The NetherlandsGoogle Scholar
  12. Coci M, Bodelier PLE, Laanbroek HJ (2008) Epiphyton as a niche for ammonia-oxidizing bacteria: detailed comparison with benthic and pelagic compartments in shallow freshwater lakes. Appl Environ Microbiol 74(7):1963–1971CrossRefGoogle Scholar
  13. Dang H, Li J, Chen R, Wang L, Guo L, Zhang Z, Klotz MG (2010) Diversity, abundance, and spatial distribution of sediment ammonia-oxidizing Betaproteobacteria in response to environmental gradients and coastal eutrophication in Jiaozhou Bay, China. Appl Environ Microbiol 76(14):4691–4702. doi: 10.1128/AEM.02563-09 CrossRefGoogle Scholar
  14. Erwin DP, Erickson IK, Delwiche ME, Colwell FS, Strap JL, Crawford RL (2005) Diversity of oxygenase genes from methane- and ammonia-oxidizing bacteria in the Eastern Snake River Plain aquifer. Appl Environ Microbiol 71(4):2016–2025. doi: 10.1128/AEM.71.4.2016- 2025.2005CrossRefGoogle Scholar
  15. Francis CA, O’Mullan GD, Ward BB (2003) Diversity of ammonia monooxygenase (amoA) genes across environmental gradients in Chesapeake Bay sediments. Geobiol 1:129–140CrossRefGoogle Scholar
  16. Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB (2005) Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci USA 102(41):14683–14688. doi: 10.1073/pnas.0506625102 CrossRefGoogle Scholar
  17. Gruber N, Galloway JN (2008) An earth-system perspective of the global nitrogen cycle. Nature 451(7176):293–296. doi: 10.1038/nature06592 CrossRefGoogle Scholar
  18. Hastings RC, Saunders JR, Hall GH, Pickup RW, McCarthy AJ (1998) Application of molecular biological techniques to a seasonal study of ammonia oxidation in a eutrophic freshwater lake. Appl Environ Microbiol 64(10):3674–3682Google Scholar
  19. Herrmann M, Saunders AM, Schramm A (2009) Effect of lake trophic status and rooted macrophytes on community composition and abundance of ammonia-oxidizing prokaryotes in freshwater sediments. Appl Environ Microbiol 75(10):3127–3136. doi: 10.1128/AEM.02806-08 CrossRefGoogle Scholar
  20. Hiorns WD, Hastings RC, Head IM, McCarthy AJ, Saunders JR, Pickup RW, Hall GH (1995) Amplification of 16S ribosomal RNA genes of autotrophic ammonia-oxidizing bacteria demonstrates the ubiquity of nitrosospiras in the environment. Microbiology 141(Pt 11):2793–2800CrossRefGoogle Scholar
  21. Hughes JB, Hellmann JJ, Ricketts TH, Bohannan BJ (2001) Counting the uncountable: statistical approaches to estimating microbial diversity. Appl Environ Microbiol 67(10):4399–4406. doi: 10.1128/AEM.67.10.4399- 4406.2001CrossRefGoogle Scholar
  22. Jiang H, Dong H, Yu B, Lv G, Deng S, Berzins N, Dai M (2009) Diversity and abundance of ammonia-oxidizing archaea and bacteria in Qinghai Lake, northwestern China. Geomicrobiol J 26(3):199–211. doi: 10.1080/01490450902744004 CrossRefGoogle Scholar
  23. Koops HP, Pommerening-Röser A (2001) Distribution and ecophysiology of the nitrifying bacteria emphasizing cultured species. FEMS Microbiol Ecol 37:1–9CrossRefGoogle Scholar
  24. Kowalchuk GA, Stephen JR (2001) Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Annu Rev Microbiol 55:485–529. doi: 10.1146/annurev.micro.55.1.485 CrossRefGoogle Scholar
  25. Kraigher B, Kosjek T, Heath E, Kompare B, Mandic-Mulec I (2008) Influence of pharmaceutical residues on the structure of activated sludge bacterial communities in wastewater treatment bioreactors. Water Res 42(17):4578–4588. doi: 10.1016/j.watres.2008.08.006 CrossRefGoogle Scholar
  26. Kumari V, Rathore G, Chauhan UK, Pandey AK, Lakra WS (2011) Seasonal variations in abundance of nitrifying bacteria in fish pond ecosystem. J Environ Biol 32(2):153–159Google Scholar
  27. Lau R (1999) TED case studies: tin mining in Malaysia-present and future. Trade Environ Database Case Stud 9(3):576Google Scholar
  28. Liu Z, Huang S, Sun G, Xu Z, Xu M (2012) Phylogenetic diversity, composition and distribution of bacterioplankton community in the Dongjiang River, China. FEMS Microbiol Ecol 80(1):30–44. doi: 10.1111/j.1574-6941.2011.01268.x CrossRefGoogle Scholar
  29. Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71(12):8228–8235. doi: 10.1128/AEM.71.12.8228- 8235.2005CrossRefGoogle Scholar
  30. Lozupone CA, Hamady M, Kelley ST, Knight R (2007) Quantitative and qualitative beta diversity measures lead to different insights into factors that structure microbial communities. Appl Environ Microbiol 73(5):1576–1585. doi: 10.1128/AEM.01996-06 CrossRefGoogle Scholar
  31. McCaig AE, Phillips CJ, Stephen JR, Kowalchuk GA, Harvey SM, Herbert RA, Embley TM, Prosser JI (1999) Nitrogen cycling and community structure of proteobacterial β-subgroup ammonia-oxidizing bacteria within polluted marine fish farm sediments. Appl Environl Microbiol 65(1):213–220Google Scholar
  32. Mosier AC, Francis CA (2008) Relative abundance and diversity of ammonia-oxidizing archaea and bacteria in the San Francisco Bay estuary. Environ Microbiol 10(11):3002–3016. doi: 10.1111/j.1462-2920.2008.01764.x CrossRefGoogle Scholar
  33. Mueller-Spitz SR, Goetz GW, McLellan SL (2009) Temporal and spatial variability in nearshore bacterioplankton communities of Lake Michigan. FEMS Microbiol Ecol 67(3):511–522. doi: 10.1111/j.1574-6941.2008.00639.x CrossRefGoogle Scholar
  34. Oertli HJ (1958) The venice system for the classification of marine waters according to salinity. Assoc Sci Limnol Oceanogr 3(3):346–347Google Scholar
  35. Ottosen LDM, Risgaard-Petersen N, Nielsen LP (1999) Direct and indirect measurements of nitrification and denitrification in the rhizosphere of aquatic macrophytes. Aquat Microb Ecol 19(1):81–91CrossRefGoogle Scholar
  36. Phillips CJ, Smith Z, Embley TM, Prosser JI (1999) Phylogenetic differences between particle-associated and planktonic ammonia-oxidizing bacteria of the β subdivision of the class proteobacteria in the northwestern Mediterranean sea. Appl Environ Microbiol 65(2):779–786Google Scholar
  37. Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25(7):1253–1256. doi: 10.1093/molbev/msn083 CrossRefGoogle Scholar
  38. Princic A, Mahne II, Megusar F, Paul EA, Tiedje JM (1998) Effects of pH and oxygen and ammonium concentrations on the community structure of nitrifying bacteria from wastewater. Appl Environ Microbiol 64(10):3584–3590Google Scholar
  39. Prosser JI, Nicol GW (2008) Relative contributions of archaea and bacteria to aerobic ammonia oxidation in the environment. Environ Microbiol 10(11):2931–2941. doi: 10.1111/j.1462-2920.2008.01775.x CrossRefGoogle Scholar
  40. Purkhold U, Wagner M, Timmermann G, Pommerening-Roser A, Koops HP (2003) 16S rRNA and amoA-based phylogeny of 12 novel betaproteobacterial ammonia-oxidizing isolates: extension of the dataset and proposal of a newlineage within the nitrosomonads. Int J Syst Evol Microbiol 53:1485–1494CrossRefGoogle Scholar
  41. Rotthauwe JH, Witzel KP, Liesack W (1997) The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl Environ Microbiol 63(12):4704–4712Google Scholar
  42. Schloss PD, Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71(3):1501–1506. doi: 10.1128/AEM.71.3.1501- 1506.2005CrossRefGoogle Scholar
  43. Silva CC, Jesus EC, Torres AP, Sousa MP, Santiago VM, Oliveira VM (2010) Investigation of bacterial diversity in membrane bioreactor and conventional activated sludge processes from petroleum refineries using phylogenetic and statistical approaches. J Microbiol Biotechnol 20(3):447–459Google Scholar
  44. Stehr G, Biittcher B, Dittberner P, Rath G, Koops HP (1995) The ammonia-oxidizing nitrifying population of the River Elbe estuary. FEMS Microbiol Ecol 17:177–186CrossRefGoogle Scholar
  45. Strauss EA, Lamberti GA (2000) Regulation of nitrification in aquatic sediments by organic carbon. Limnol Oceanogr 45(8):1854–1859CrossRefGoogle Scholar
  46. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739 Google Scholar
  47. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680CrossRefGoogle Scholar
  48. Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman DG (1997) Human alteration of global nitrogen cycle: source and consequences. Ecol Appl 7(3):737–750Google Scholar
  49. Wahlen M (1993) The global methane cycle. Annu Rev Earth Planet Sci 21:407–426CrossRefGoogle Scholar
  50. Wang S, Gonzalez PP, Ye J, Huang D (2012) Abundance and diversity of nitrogen-fixing bacteria in rhizosphere and bulk paddy soil under different duration of organic management. World J Microbiol Biotechnol 28(2):493–503CrossRefGoogle Scholar
  51. Xia X, Yang Z, Zhang X (2009) Effect of suspended-sediment concentration on nitrification in river water: importance of suspended sediment-water interface. Environ Sci Technol 43(10):3681–3687CrossRefGoogle Scholar
  52. Yusoff FM, Shariff M, Gopinath N (2006) Diversity of Malaysian aquatic ecosystems and resources. Aquat Ecosyst Health Manag 9(2):119–135. doi: 10.1080/14634980600713315 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • S. L. S. Sow
    • 1
  • G. Khoo
    • 1
  • L. K. Chong
    • 2
  • T. J. Smith
    • 3
  • P. L. Harrison
    • 3
  • H. K. A. Ong
    • 4
    Email author
  1. 1.Department of Biological Science, Faculty of ScienceUniversiti Tunku Abdul RahmanKamparMalaysia
  2. 2.School of Science and EngineeringMalaysia University of Science and TechnologyPetaling JayaMalaysia
  3. 3.Biomedical Research CentreSheffield Hallam UniversitySheffieldUK
  4. 4.Department of Pre-Clinical Sciences, Faculty of Medicine and Health SciencesUniversiti Tunku Abdul RahmanKajangMalaysia

Personalised recommendations