Advertisement

World Journal of Microbiology and Biotechnology

, Volume 30, Issue 2, pp 585–594 | Cite as

Isolation of a new Pseudomonas halophila strain possess bacteriorhodopsin-like protein by a novel method for screening of photoactive protein producing bacteria

  • Maryam Fanaei
  • Giti EmtiaziEmail author
Original Paper

Abstract

Bacteriorhodopsin (bR) is a transmembrane protein deposited in the purple membrane of Halobacterium salinarum which absorbs energy from photons to create a photo-induced proton gradient across the membrane. A bR molecule can be considered as a natural solar device transforming light into other types of energy and therefore is of interest for a wide range of applications including two and three-dimensional memory storage, optical data processing, artificial cells, holographic media, the artificial retina and photo sensor devices. H. salinarum is a slow-growing, halophilic Archaea present in red salt waters. The present study introduces a novel bR-like pigment from a new strain of Pseudomonas halophila (with registered accession number KC959570 in the NCBI databank) which has a very significant degree of light-dependent activity. This is the first report on the presence of functional bR-like protein in the Pseudomonas family. The isolate is a fast-growing, halophilic bacterium and is comparable with other photoactive protein producer microorganisms. Also, in the present study a novel isolation method for screen light-stimulating protein producing microorganisms is introduced. For this purpose 2,3,5-triphenyltetrazolium chloride (TTC) was employed for the first time as an artificial hydrogen acceptor in the proton-transfer processes. The TTC test is an easy and susceptible method for estimating hydrogen production during the proton transport process. This is the first report of the use of TTC for photo activity measurement and selection of bacteria containing light dependent proteins.

Keywords

Bacteriorhodopsin Photoactive protein Pseudomonas halophila Archaea Bacteria 

References

  1. Anton J, Oren A, Benlloch S, Rodrıguez-Valera F, Amann R, Rossello-Mora R (2002) Salinibacter ruber gen. nov., sp. nov., a novel, extremely halophilic member of the Bacteria from saltern crystallizer ponds. Int J Syst Evol Microbiol 52:485–491. doi: 10.1099/ijs.0.01913-0 Google Scholar
  2. Balashov SP, Imasheva ES, Boichenko VA, Antón J, Wang JM, Lanyi JK (2005) Xanthorhodopsin: a proton pump with a light-harvesting carotenoid antenna. Science 309(5743):2061–2064. doi: 10.1126/science.1118046 CrossRefGoogle Scholar
  3. Becker K, Laham NA, Fegeler W, Proctor RA, Peters G, von Eiff C (2006) Fourier-transform infrared spectroscopic analysis is a powerful tool for studying the dynamic changes in Staphylococcus aureus small-colony variants. J Clin Microbiol 44(9):3274–3278CrossRefGoogle Scholar
  4. Boichenko VA, Wang JM, Antón J, Lanyi JK, Balashovb SP (2006) Functions of carotenoids in xanthorhodopsin and archaerhodopsin, from action spectra of photoinhibition of cell respiration. Biochim Biophys Acta 1757(12):1649–1656CrossRefGoogle Scholar
  5. Braun T, Backmann N, Vögtli M, Bietsch A, Engel A, Lang HP, Gerber C, Hegner M (2006) Conformational change of bacteriorhodopsin quantitatively monitored by microcantilever sensors. Biophys J 90(8):2970–2977CrossRefGoogle Scholar
  6. Csonkaa C, Kupaia K, Kocsisa GF, Novákb G, Feketea V, Bencsikb P, Csonta T, Ferdinandya P (2010) Measurement of myocardial infarct size in preclinical studies. J Pharmacol Toxicol Methods 61(2):163–170CrossRefGoogle Scholar
  7. Davis R, Mauer LJ (2010) Fourier transform infrared (FT-IR) spectroscopy: a rapid tool for detection and analysis of foodborne pathogenic bacteria. Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology 2:1582–1594Google Scholar
  8. DeLong EF, Béjà O (2010) The light-driven proton pump proteorhodopsin enhances bacterial survival during tough times. PLoSBiol 8(4):e1000359. doi: 10.1371/journal.pbio.1000359 CrossRefGoogle Scholar
  9. Dummer AM, Bonsall JC, Cihla JB, Lawry SM, Johnson GC, Peck RF (2011) Bacterioopsin-mediated regulation of bacterioruberin biosynthesis in Halobacterium salinarum. J Bacteriol 193(20):5658–5667. doi: 10.1128/JB.05376-11 CrossRefGoogle Scholar
  10. Dussault HP (1955) An improved technique for staining red halophilic bacteria. J Bacteriol 70(4):484–485Google Scholar
  11. Luecke H, Schobert B, Richter H-T, Lanyi JK, Cartailler J-P (1999) Structure of bacteriorhodopsin at 1.55 Å resolution. J Mol Biol 291:899–911CrossRefGoogle Scholar
  12. Martinez A, Bradley AS, Waldbauer JR, Summons RE, DeLong EF (2006) Proteorhodopsin photosystem gene expression enables photophosphorylation in a heterologous host. PNAS 104(13):5590–5595Google Scholar
  13. McCarren J, DeLong EF (2007) Proteorhodopsin photosystem gene clusters exhibit co-evolutionary trends and shared ancestry among diverse marine microbial phyla. Environ Microbiol 9(4):846–858CrossRefGoogle Scholar
  14. Mohr V, Larsen H (1963) On the structural transformations and lysis of Halobacterium salinarium in hypotonic and isotonic solutions. J Gen Microbiol 31:267–280CrossRefGoogle Scholar
  15. Mongodin EF, Nelson KE, Daugherty S, DeBoy RT, Wister J, Khouri H, Weidman J, Walsh DA, Papke RT, Sanchez Perez G, Sharma AK, Nesbø CL, MacLeod D, Bapteste E, Doolittle WF, Charlebois RL, Legault B, Olson TL, van de Meene AML, Francis JN, Pierson BK, Blankenship RE (2007) Pigment analysis of “Candidatus Chlorothrix halophila”, a green filamentous anoxygenic phototrophic bacterium down-pointing small open triangle. J Bacteriol 189(11):4187–4195CrossRefGoogle Scholar
  16. Nweke CO, Okpokwasili GC (2010) Influence of exposure time on phenol toxicity to refinery wastewater bacteria. J Environ Chem Ecotoxicol 2(2):020–027Google Scholar
  17. Oren A (2009) Microbial diversity and microbial abundance in salt-saturated brines: why are the waters of hypersaline lakes red? Natural Resources and Environmental Issues: vol 15, Article 49Google Scholar
  18. Oren A, Mana L (2002) Amino acid composition of bulk protein and salt relationships of selected enzymes of Salinibacter ruber, an extremely halophilic bacterium. Extremophiles 6(3):217–223CrossRefGoogle Scholar
  19. Oren A, Heldal M, Norland S, Galinski EA (2002) Intracellular ion and organic solute concentrations of the extremely halophilic bacterium Salinibacter ruber. Extremophiles 6(6):491–498CrossRefGoogle Scholar
  20. Rousso I, Gat Y, Lewis A, Sheves M, Ottolenghi M (1998) Effective light-induced hydroxylamine reactions occur with C13=C14 non isomerizable bacteriorhodopsin pigments. Biophys J 75(1):413–417CrossRefGoogle Scholar
  21. Shammohammadi HR (1998) Protective roles of bacterioruberin and intracellular KCl in the resistance of Halobacterium salinarium against DNA-damaging agents. J Radiat Res 39(4):251CrossRefGoogle Scholar
  22. Sharma AK, Spudich JL, Doolittle WF (2006) Microbial rhodopsins: functional versatility and genetic mobility. Trends Microbiol 14(11):463–469CrossRefGoogle Scholar
  23. Spudich JL (2006) The multitalented microbial sensory rhodopsins. Trends Microbiol 14(11):480–487CrossRefGoogle Scholar
  24. Tokaji Z, Fodor E, Szabó-Nagy A, Páli T (2010a) Hydroxylamine as a thermal destabiliser of bacteriorhodopsin. Eur Biophys J 39(12):1605–1611. doi: 10.1007/s00249-010-0618-7 CrossRefGoogle Scholar
  25. Tokaji Z, Fodor E, Szabó-Nagy A, Páli T (2010b) Hydroxylamine as a thermal destabiliser of bacteriorhodopsin. EurBiophys J39(12):1605–1611. doi: 10.1007/s00249-010-0618-7 Google Scholar
  26. Verche`re A, Broutin I, Picard M (2012) Photo-induced proton gradients for the in vitro investigation of bacterial efflux pumps. Sci Rep 2:306. doi: 10.1038/srep00306 Google Scholar
  27. Yachai M (2009) Carotenoid production by halophilic archaea and its application. A thesis submitted in partial fulfillment of the requirements for the degree of doctor of philosophy in food technology Prince of Songkla UniversityGoogle Scholar
  28. Yang JL, Wang MS, Cheng ACh, Pan KCh, Li ChF, Deng SX (2008) A simple and rapid method for extracting bacterial DNA from intestinal microflora for ERIC-PCR detection. World J Gastroenterol 14(18):2872–2876CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Biology Department, Faculty of ScienceUniversity of IsfahanIsfahanIran

Personalised recommendations