World Journal of Microbiology and Biotechnology

, Volume 29, Issue 11, pp 1989–2002 | Cite as

Remarkable impact of PAHs and TPHs on the richness and diversity of bacterial species in surface soils exposed to long-term hydrocarbon pollution

  • Tibor Benedek
  • Balázs Vajna
  • András Táncsics
  • Károly Márialigeti
  • Szabolcs Lányi
  • István Máthé
Original Paper


Nowadays, because of substantial use of petroleum-derived fuels the number and extension of hydrocarbon polluted terrestrial ecosystems is in growth worldwide. In remediation of aforementioned sites bioremediation still tends to be an innovative, environmentally attractive technology. Although huge amount of information is available concerning the hydrocarbon degradation potential of cultivable hydrocarbonoclastic bacteria little is known about the in situ long-term effects of petroleum derived compounds on the structure of soil microbiota. Therefore, in this study our aim was to determine the long-term impact of total petroleum hydrocarbons (TPHs), volatile petroleum hydrocarbons (VPHs), total alkyl benzenes (TABs) as well as of polycyclic aromatic hydrocarbons (PAHs) on the structure of bacterial communities of four different contaminated soil samples. Our results indicated that a very high amount of TPH affected positively the diversity of hydrocarbonoclastic bacteria. This finding was supported by the occurrence of representatives of the α-, β-, γ-Proteobacteria, Actinobacteria, Flavobacteriia and Bacilli classes. High concentration of VPHs and TABs contributed to the predominance of actinobacterial isolates. In PAH impacted samples the concentration of PAHs negatively correlated with the diversity of bacterial species. Heavily PAH polluted soil samples were mainly inhabited by the representatives of the β-, γ-Proteobacteria (overwhelming dominance of Pseudomonas sp.) and Actinobacteria.


PAHs TPHs Bacterial diversity Canonical correspondence analysis PCA T-RFLP 



The authors are grateful to the Sectoral Operational Programme Human Resources Development 2007-2013 of the Romanian Ministry of Labour, Family and Social Protection through the Financial Agreement POSDRU/88/1.5/S/60203, as well as to the Research Programs Institute of Sapientia Foundation (Grant No. 1047/2006 and 663/2007) for the financial support of this research. Tibor Benedek also wishes to express his thanks to the Foundation of Domus Hungarica Scientiarum et Artium. András Táncsics was supported by the Bolyai János Research Grant of the Hungarian Academy of Sciences.


  1. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402CrossRefGoogle Scholar
  2. Andreoni V, Cavalca L, Rao MA, Nocerino G, Bernasconi S, Dell Amico E, Colombo M, Gianfreda L (2004) Bacterial communities and enzyme activities of PAHs polluted soils. Chemosphere 57:401–412CrossRefGoogle Scholar
  3. Bamforth SM, Singleton I (2005) Review: bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions. J Chem Technol Biotechnol 80:723–736CrossRefGoogle Scholar
  4. Ben Said O, Goñi-Urriza M, El Bour M, Aissa P, Duran R (2010) Bacterial community structure of sediments of the Bizerte Lagoon (Tunisia), a southern mediterranean coastal anthropized lagoon. Microb Ecol 59:445–456CrossRefGoogle Scholar
  5. Buckley DH, Schmidt TM (2002) Exploring the biodiversity of soil. A microbial rain forest. In: Staley JT, Reysenbach AL (eds) Biodiversity of microbial life. Wiley, New York, pp 183–234Google Scholar
  6. Caretta CA, Brito EMS (2011) In silico restriction analysis for identifying microbial communities in T-RFLP fingerprints. J Comp Int Sci 2:123–129Google Scholar
  7. Chun J, Lee JH, Jung Y, Kim M, Kim S, Kim BK, Lim YW (2007) EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Micr 57:2259–2261CrossRefGoogle Scholar
  8. dos Santos HF, Cury JC, do Carmo FL, dos Santos AL, Tiedje J, van Elsas JD, Rosado AS, Peixoto RS (2011) Mangrove bacterial diversity and the impact of oil contamination revealed by pyrosequencing: bacterial proxies for oil pollution. PLoS ONE 6:e16943. doi: 10.1371/journal.pone.0016943 CrossRefGoogle Scholar
  9. Erikson M, Sodersten E, Yu Z, Delhammar G, Mohn WW (2003) Degradation of polycyclic aromatic hydrocarbons at low temperature under aerobic and nitrate-reducing conditions in enrichment cultures from Northern soils. Appl Environ Microbiol 69:275–284CrossRefGoogle Scholar
  10. Fedi S, Tremaroli V, Scala D, Perez-Jimenez JR, Fava F, Young L, Zannoni D (2005) T-RFLP analysis of bacterial communities in cyclodextrin-amended bioreactors developed for biodegradation of polychlorinated biphenyls. Res Microbiol 156:201–210CrossRefGoogle Scholar
  11. George-Okafor U, Tasie F, Muotoe-Okafor F (2009) Hydrocarbon degradation potentials of indigenous fungal isolates from petroleum contaminated soils. J Phys Nat Sci 3:1–6Google Scholar
  12. Gonul LT, Kucuksezgin F (2012) Aliphatic and polycyclic aromatic hydrocarbons in the surface sediments from the Eastern Aegean: assessment and source recognition of petroleum hydrocarbons. Environ Sci Pollut Res 19:31–41CrossRefGoogle Scholar
  13. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:1–9Google Scholar
  14. Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169:1–15CrossRefGoogle Scholar
  15. Hewson I, Fuhrman JA (2004) Richness and diversity of bacterioplankton along an estuarine gradient in Moreton Bay, Australia. Appl Environ Microbiol 70:3425–3433CrossRefGoogle Scholar
  16. Iannelli R, Bianchi V, Macci C, Peruzzi E, Chiellini C, Petroni G, Masciandaro G (2012) Assessment of pollution impact on biological activity and structure of seabed bacterial communities in the Port of Livorno (Italy). Sci Total Environ 426:56–64CrossRefGoogle Scholar
  17. Irwin RJ (1997) Environmental contaminants encyclopedia.
  18. Johnsen AR, Wick LY, Harms H (2005) Principles of microbial PAH-degradation in soil. Environ Poll 133:71–84CrossRefGoogle Scholar
  19. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acids techniques in bacterial systematic. Wiley, New York, pp 115–175Google Scholar
  20. Lee EH, Lee SH, Cho KS (2011) Bacterial diversity dynamics in a long-term petroleum-contaminated soil. J Environ Sci Health A Tox Hazard Subst Environ Eng 46:281–290CrossRefGoogle Scholar
  21. Li H, Zhang Y, Zhang CG, Chen GX (2005) Effect of petroleum-containing wastewater irrigation on bacterial diversities and enzymatic activities in a paddy soil irrigation area. J Environ Qual 34:1073–1080CrossRefGoogle Scholar
  22. Liu WT, Marsh TL, Cheng H, Forney LJ (1997) Characterization of microbial diversity by determining the terminal restriction fragment length polymorphism of genes encoding 16S rRNA. Appl Environ Microbiol 63:4516–4522Google Scholar
  23. Liu H, Yang CY, Tian Y, Lin GH, Zheng TL (2010) Screening of PAH-degrading bacteria in a mangrove swamp using PCR-RFLP. Mar Pollut Bull 60:2056–2061CrossRefGoogle Scholar
  24. Ma Y, Wang L, Shao Z (2006) Pseudomonas, the dominant polycyclic aromatic hydrocarbon-degrading bacteria isolated from Antarctic soils and the role of large plasmids in horizontal gene transfer. Environ Microbiol 8:455–465CrossRefGoogle Scholar
  25. Massol-Deya AA, Odelson DA, Hickey RF, Tiedje JM (1995) Bacterial community fingerprinting of amplified 16S and 16–23S ribosomal DNA gene sequences and restriction endonuclease analysis (ARDRA). In: Akkermanns ADL, van Elsas JD, de Bruijn F (eds) Molecular microbial ecology manual. Kluwer, Dordrecht, pp 1–8Google Scholar
  26. Máthé I, Benedek T, Táncsics A, Palatinszky M, Lányi Sz, Márialigeti K (2012) Diversity, activity, antibiotic and heavy metal resistance of Bacteria from petroleum hydrocarbon contaminated soils located in Harghita county, Romania. Int Biodeterior Biodegrad 73:41–49CrossRefGoogle Scholar
  27. Mazzeo DEC, Levy CE, de Angelis DF, Marin-Morales MA (2010) BTEX biodegradation by bacteria from effluents of petroleum refinery. Sci Total Environ 408:4334–4340CrossRefGoogle Scholar
  28. Mrozik A, Piotrowska-Seget Z, Labuzek S (2003) Bacterial degradation and bioremediation of polycyclic aromatic hydrocarbons. Pol J Environ Stud 12:15–25Google Scholar
  29. MSZ 21470-84 (2002) Environmental protection. Soil analysis. Part 84. Determination of polycyclic aromatic hydrocarbon (PAH) Content. Gas Chromatographic mass Spectrometric Method. Hungarian Standard Institution, BudapestGoogle Scholar
  30. MSZ 21470-92 (1997) Environmental protection. Soil analysis. Determination of volatile aromatic hydrocarbons. Hungarian Standard Institution, BudapestGoogle Scholar
  31. MSZ 21470-92 (1998) Environmental protection. Soil analysis. Determination of TPHs (C5-C40) and BTEX compounds. Hungarian Standard Institution, BudapestGoogle Scholar
  32. Muckian L, Grant R, Doyle E, Clipson N (2007) Bacterial community structure in soils contaminated by polycyclic aromatic hydrocarbons. Chemosphere 68:1535–1541CrossRefGoogle Scholar
  33. Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700Google Scholar
  34. Nie M, Zhang X, Wang J, Jiang L, Yang J, Quan Z, Cui X, Fang C, Li B (2009) Rhizosphere effects on soil bacterial abundance and diversity in the Yellow River Deltaic ecosystems as influenced by petroleum contamination and soil salinization. Soil Biol Biochem 41:2535–2542CrossRefGoogle Scholar
  35. Pannu JK, Singh A, Ward OP (2003) Influence of peanut oil on microbial degradation of polycyclic aromatic hydrocarbons. Can J Microbiol 49:508–513CrossRefGoogle Scholar
  36. Pavelescu G, Roman C, Pfeiffer E, Levei EA, Miclean M, Savastru D, Cordos E (2008) Evaluation of petroleum contaminants in soils in Suplacu de Barcău area, Romania. 4th Bio remediation conference, GreeceGoogle Scholar
  37. Philp JC, Atlas RM (2005) Bioremediation of contaminated soils and aquifers. Bioremediation: applied microbial solutions for real-world environmental cleanup. ASM Press, WashingtonGoogle Scholar
  38. Rosano-Hernández MC, Ramírez-Saad H, Fernández-Linares L (2012) Petroleum-influenced beach sediments of the Campeche Bank, Mexico: diversity and bacterial community structure assessment. J Environ Microbiol 95:325–331Google Scholar
  39. Singh R, Celin SM (2010) Biodegradation of BTEX (benzene, toluene, ethyl benzene and xylenes) compounds by bacterial strain under aerobic conditions. J Ecobiotechnol 2:27–32Google Scholar
  40. Singleton DR, Ramirez LG, Michael D (2009) Characterization of a polycyclic aromatic hydrocarbon degradation gene cluster in a phenanthrene-degrading Acidovorax strain. Appl Environ Microbiol 75:2613–2620CrossRefGoogle Scholar
  41. Sipilä TP, Keskinen AK, Akerman ML, Fortelius C, Haahtela K, Yrjälä K (2008) High aromatic ring-cleavage diversity in birch rhizosphere: PAH treatment-specific changes of I.E.3 group extradiol dioxygenases and 16S rRNA bacterial communities in soil. ISME J 2:968–981CrossRefGoogle Scholar
  42. Skowasch D, Möbuse E, Maser E (2002) Identification of a novel Comamonas testosteroni gene encoding a steroid-inducible extradiol dioxygenase. Biochem Biophys Res Commun 294:560–566CrossRefGoogle Scholar
  43. Smith CJ, Danilowicz BS, Clear AK, Costello FJ, Wilson B, Meijer WG (2005) T-Align, a web-based tool for comparison of multiple terminal restriction fragment length polymorphism profiles. FEMS Microbiol Ecol 54:375–380CrossRefGoogle Scholar
  44. Takeuchi M, Hamana K, Hiraishi A (2001) Proposal of the genus Sphingomonas sensu stricto and the three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Sys Evol Microbiol 51:1405–1417Google Scholar
  45. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599CrossRefGoogle Scholar
  46. Thavamani P, Malik S, Beer M, Megharaj M, Naidu R (2012) Microbial activity and diversity in long-term mixed contaminated soils with respect to polyaromatic hydrocarbons and heavy metals. J Environ Manage 30:10–17CrossRefGoogle Scholar
  47. Vajna B, Szili D, Nagy A, Márialigeti K (2012) An improved sequence-aided T-RFLP analysis of bacterial succession during oyster mushroom substrate preparation. Microb Ecol. doi: 10.1007/s00248-012-0063-5 Google Scholar
  48. Zhou HW, Wong AH, Yu RM, Park YD, Wong YS, Tam NF (2009) Polycyclic aromatic hydrocarbon-induced structural shift of bacterial communities in mangrove sediment. Microbiol Ecol 58:153–160CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Tibor Benedek
    • 1
    • 3
  • Balázs Vajna
    • 2
  • András Táncsics
    • 3
  • Károly Márialigeti
    • 2
  • Szabolcs Lányi
    • 4
  • István Máthé
    • 4
  1. 1.Department of Analytical Chemistry and Environmental EngineeringPolytehnical University of BucharestBucharestRomania
  2. 2.Department of MicrobiologyEötvös Loránd UniversityBudapestHungary
  3. 3.Regional University Center of Excellence in Environmental IndustrySzent István UniversityGödöllőHungary
  4. 4.Bioengineering DepartmentSapientia Hungarian University of TransylvaniaMiercurea CiucRomania

Personalised recommendations