World Journal of Microbiology and Biotechnology

, Volume 29, Issue 10, pp 1751–1762 | Cite as

Impact of external forces on cyanophage–host interactions in aquatic ecosystems

  • Sabah A. A. JassimEmail author
  • Richard G. Limoges


Cyanobacterial (algal) blooms have by convention been attributed to the excessive level of nutrients from pollution and runoff, which promotes the rapid growth and multiplication of cyanobacteria or algae. The cyanophage (virus) is the natural predator of cyanobacteria (the host). The aim of this review is to unveil certain pressures that disrupt cyanophage–host interactions and the formation of cyanobacterial blooms. This review focuses principally on the impact of greenhouse gases, ozone depletion, solar ultraviolet radiation (SUR) and the role of recently discovered virophages, which coexist with and in turn are the natural predator of phages. The key findings are that the increase in SUR, the mutation of cyanophages and cyanobacteria, along with changing nutrient levels, have combined with virophages to impede cyanophage–host interactions and the resultant viral infection and killing of the cyanobacterial cell, which is a necessary step in controlling cyanobacterial blooms. Consider this a ‘call to action’ for researchers interested in corrective action aimed at evolving aquatic ecosystems.


Aquatic ecosystems Bacteriophage Cyanobacteria Cyanophage Greenhouse gases Harmful algae blooms Ozone UV Virophage 


  1. Anderson DM, Galloway SB, Joseph JD (1993) Marine biotoxins and harmful algae: a national plan. WHOI-93-02, WHOASWeb. Accessed Jan 1993
  2. Asato Y (1976) Ultraviolet light inactivation and photoreactivation of AS-1 cyanophage in Anacystitis nidulans. J Bacteriol 126:550–552Google Scholar
  3. Bisen PS, Audholia S, Bhatnagar AK, Bagchi SN (1986) Evidence for lysogeny and viral resistance in the cyanobacterium Phormidium uncinatum. Curr Microbiol 13:1–5CrossRefGoogle Scholar
  4. Bohannan BJM, Lenski RE (2000) Linking genetic change to community evolution: insights from studies of bacteria and bacteriophage. Ecol Lett 3:362–377CrossRefGoogle Scholar
  5. Breitbart M, Thompson LR, Suttle CA, Sullivan MB (2007) Exploring the vast diversity of marine viruses. Oceanography 20:135–139CrossRefGoogle Scholar
  6. Bushaw-Newton KL, Sellner KG (1999) Harmful algal blooms. In: NOAA’s state of the coast report. National oceanic and atmospheric administration, Silver Spring, MD. NOAA Web Accessed 1999
  7. Cannon RE, Shane MS, Whitaker JM (1976) Interaction of Plectonema boryanum (Cyanophyceae) and the LPP-cyanophages in continuous culture. J Phycol 12:418–421Google Scholar
  8. Carmichael W (2008) A world overview—one-hundred-twenty-seven years of research on toxic cyanobacteria—where do we go from here? Adv Exp Med Biol 619:105–125CrossRefGoogle Scholar
  9. Castberg T, Larsen A, Sandaa RA, Brussaard CPD, Egge J, Heldal M, Paulina A, Thyrhaug R, Van Hannen EJ, Bratbak G (2001) Population dynamics and diversity during a bloom of the marine coccolithophorid Emiliana huxleyi (Haptophyta). Mar Ecol Prog Ser 221:39–46CrossRefGoogle Scholar
  10. Cimitile M (2011) The fight for the first climate change treaty. Solutions 2(5).
  11. Clancy S (2008) DNA damage and repair: mechanisms for maintaining DNA integrity. Nature Educ 1(1).
  12. Clokie MRJ, Mann NH (2006) Marine cyanophages and light. Environ Microbiol 8:2074–2082CrossRefGoogle Scholar
  13. Crutzen PJ, Mosier AR, Smith KA, Winiwarter W (2007) N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos Chem Phys Discuss 7:11191–11205CrossRefGoogle Scholar
  14. De Haan H (1993) Solar UV-light penetration and photodegradation of humic substances in peaty lake water. Limnol Oceanogr 38:1072–1076CrossRefGoogle Scholar
  15. Drabkova M, Marsalek B (2007) A review of in-lake methods of cyanobacterial blooms control and management. CyanoData Web. Accessed Apr 2007
  16. Farman JC, Gardiner BG, Shanklin JD (1985) Large losses of total ozone in Antarctica reveal seasonal ClO X/NO X interaction. Nature 315:207–210CrossRefGoogle Scholar
  17. Fischer MG, Suttle CA (2011) A virophage at the origin of large DNA transposons. Science 332:231–234CrossRefGoogle Scholar
  18. Foflonker F (2009) Biological methods to control common algal bloom-forming species. MMG 445 Basic Biotech J 5(1):9–24Google Scholar
  19. Frederickson CM, Short SM, Suttle CA (2003) The physical environment affects cyanophage communities in British Columbia inlets. Microb Ecol 46:348–357CrossRefGoogle Scholar
  20. Friedberg EC, Walker GC, Siede W (1995) DNA repair and mutagenesis. ASM Press, Washington, D.C., pp 24–31Google Scholar
  21. Fristachi A, Sinclair JL (2008) Occurrence of cyanobacterial harmful algal blooms: Workgroup report. In: Hudnell HK, Back N, Cohen IR, Lajtha A, Lambris JD, Paoletti R (eds) Cyanobacterial harmful algal blooms: state of the science and research needs, vol 619, chap 3. Springer Science, NY, pp 45–103. ISBN: 978-0-387-75864-0Google Scholar
  22. Fuhrman JA (1999) Marine viruses and their biogeochemical and ecological effects. Nature 399:541–548CrossRefGoogle Scholar
  23. Fuhrman JA, Suttle CA (1993) Viruses systems in marine planktonic. Oceanogr 6:51–63Google Scholar
  24. Garza DR, Suttle CA (1998) The effect of cyanophages on the mortality of Synechococcus spp. and selection for UV resistant viral communities. Microb Ecol 36:281–292CrossRefGoogle Scholar
  25. Gons HJ, Ebert J, Hoogveld HL, van den Hove L, Pel R, Takkenberg W, Woldringh CJ (2002) Observations on cyanobacterial population collapse in eutrophic lake water. A van Leeuw 81:319–326CrossRefGoogle Scholar
  26. Haaber J, Middelboe M (2009) Viral lysis of Phaeocystis pouchetii: implications for algal population dynamics and heterotrophic C, N and P cycling. ISME J 3:430–441CrossRefGoogle Scholar
  27. Hader DP, Sinha RP (2005) Solar ultraviolet radiation-induced DNA damage in aquatic organisms: potential environmental impact. Mutat Res 571:221–233CrossRefGoogle Scholar
  28. HARRNESS (2005) Harmful algal research and response: a national environmental science strategy 2005–2015. In: Ramsdell JS, Anderson DM, Glibert PM (eds) ESA, Washington DC, pp 17–20.
  29. IPCC (2001) The climate system: an overview. In: Baede APM, Ahlonsou E, Ding Y, Schimel D, BolinB, Pollonais S (eds) IPCC Web, pp 87–98.
  30. IPCC (2007) Climate change 2007: the physical science basis. In: Solomon S, Qin D, Manning M, Marquis M, Averyt K, Tignor MMB, Miller HL-R Jr, Chen Z (eds) Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change (IPCC), 2007. Cambridge University Press, Cambridge, UK, pp 996.
  31. Jassim SAA, AbouFoul KS, Alnajjar AA (2010) Methods and compositions for the control of harmful blooms. WIPO Patent Application WO/2010/109224Google Scholar
  32. Jiang SC, Paul JH (1988) Significance of lysogeny in the marine environment studies with isolates and a model of lysogenic phage production. Microb Ecol 35:235–243CrossRefGoogle Scholar
  33. Kalluri SB (2008) A web-based modeling approach for tracking algal blooms in lower Great Lakes. M.Sc. Thesis. State University of New York at BuffaloGoogle Scholar
  34. Kellog CA, Paul JA (1982) Degree of ultraviolet radiation damage and repair capabilities are related to G + C content in marine vibriophages. Aquat Microb Ecol 27:13–20CrossRefGoogle Scholar
  35. Kitamura S-I, Kamata S-I, Nakano S-I, Suzuki S (2004) Solar UV radiation does not inactivate marine birnavirus in coastal seawater. Dis Aquat Org 58:251–254CrossRefGoogle Scholar
  36. La Scola B, Desnues C, Pagnier I, Robert C, Barrassi L, Fournous G, Merchat M, Suzan-Monti M, Forterre P, Koonin E, Raoult D (2008) The virophage as a unique parasite of the giant mimivirus. Nature 455:100–104CrossRefGoogle Scholar
  37. Lee LH, Lui D, Platner PJ, Hsu SF, Chu TC, Gaynor JJ, Vega QC, Lustigman BK (2006) Induction of temperate cyanophage AS-1 by heavy metal copper. BMC Microbiol 6:17CrossRefGoogle Scholar
  38. Liao MJ, Cheng K, Yang JY, Zhao YJ, Shi ZL (2010) Assessment of UV-B damage in cyanophage PP. Aquat Microb Ecol 58:323–328Google Scholar
  39. Lytle CD, Sagripanti JL (2005) Predicted inactivation of viruses of relevance to biodefense by solar radiation. J Virol 79:14244–14252CrossRefGoogle Scholar
  40. Lytle CD, Aaronson SA, Harvey E (1972) Host cell reactivation in mammalian cells. II. Survival of herpes simplex virus and vaccinia in normal human and xeroderma pigmentosum cells. Int J Radiat Biol Relat Stud Phys Chem Med 22:159–165Google Scholar
  41. Maranger R, Bird DF (1995) Viral abundance in aquatic systems: a comparison between marine and fresh waters. Mar Ecol Prog Ser 121:217–226CrossRefGoogle Scholar
  42. Marchal V, Dellink R, Vuuren DV, Clapp C, Château J, Lanzi E, Magné B, Vliet JV (2011) The OECD environmental outlook to 2050. Climate change. OECD. Pre-release version, November 2011Google Scholar
  43. McDaniel L, Houchin LA, Williamson SJ, Paul JH (2002) Plankton blooms: lysogeny in marine Synechococcus. Nature 415:496CrossRefGoogle Scholar
  44. McDaniel LD, dela Rosa M, Paul JH (2006) Temperate and lytic cyanophages from the Gulf of Mexico. J Mar Biol Assoc UK 86:517–527CrossRefGoogle Scholar
  45. McKenzie RL, Aucamp PJ, Bais AF, Björn LO, Ilyas M, Madronich S (2011) Ozone depletion and climate change: impacts on UV radiation. Photochem Photobiol Sci 10:182–198CrossRefGoogle Scholar
  46. Millard A, Clokie MRJ, Shub DA, Mann NH (2004) Genetic organization of the psbAD region in phages infecting marine Synechococcus strains. Proc Natl Acad Sci USA 101:11007–11012CrossRefGoogle Scholar
  47. Miyamura Y, Coelho SG, Schlenz K, Batzer J, Smuda C, Choi W, Brenner M, Passeron T, Zhang G, Kolbe L, Wolber R, Hearing VJ (2011) The deceptive nature of UVA-tanning versus the modest protective effects of UVB-tanning on human skin. Pigment Cell Melanoma Res 24(1):136–147CrossRefGoogle Scholar
  48. Monier A, Claverie J-M, Ogata H (2008) Taxonomic distribution of large DNA viruses in the sea. Genome Biol 9(7):R106CrossRefGoogle Scholar
  49. Mur LR, Skulberg OM, Utkilen H (1999) Cyanobacteria in the environment. In: Chorus I, Bartram J (eds) Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management, chap 2. WHO. ISBN 0-419-23930-8Google Scholar
  50. Murphy TM, Gordon MP (1981) Photobiology of RNA viruses. In: Fraenkel-Conrat H, Wagner RR (eds) Comprehensive virology. Plenum Press, NY, pp 285–351CrossRefGoogle Scholar
  51. Newman PA, Oman LD, Douglass AR, Fleming EL, Frith SM, Hurwitz MM, Kawa SR, Jackman CH, Krotkov NA, Nash ER, Nielsen JE, Pawson S, Stolarski RS, Velders GJM (2009) What would have happened to the ozone layer if chlorofluorocarbons (CFCs) had not been regulated? Atmos Chem Phys 9(6):2113–2128CrossRefGoogle Scholar
  52. Ohki K (1998) Distributions and diversity of lysogenic cyanophages in marine cyanobacteria. In: Algal virus workshop. Department of microbiology, university of Bergen, Bergen, Norway, June 14–18.
  53. Ortmann AC, Lawrence LE, Suttle CA (2002) Lysogeny and lytic viral production during a bloom of the Cyanobacterium Synechococcus spp. Microb Ecol 43:225–231CrossRefGoogle Scholar
  54. Padan E, Shilo M, Kislev N (1967) Isolation of cyanophages from freshwater ponds and their interaction with Plectonema boryanum. Virology 32:234–246CrossRefGoogle Scholar
  55. Paerl HW, Hall NS, Calandrino ES (2011) Controlling harmful cyanobacterial blooms a world experiencing anthropogenic and climatic-induced change. Sci Total Environ 409:1739–1745CrossRefGoogle Scholar
  56. Paul VJ (2008) Global warming and cyanobacterial harmful algal blooms. Adv Exp Med Biol 619:239–257CrossRefGoogle Scholar
  57. Pearson H (2008) Virophage suggests viruses are alive: evidence of illness enhances case for life. Nature 454:677CrossRefGoogle Scholar
  58. Pedersen HB, Josephsen J, Kerszman G (1985) Phosphate buffer and salt medium concentrations affect the inactivation of T4 phage by platinum (II) complexes. Chem Biol Interact 54:1–8CrossRefGoogle Scholar
  59. Peter T (2011) Ozone depletion and climate change. In: Eawag-UNEP Symposium. Ozone depletion, solar UV radiation, and climate change: interactive effects and feedbacks Eawag: Swiss Federal Institute of Aquatic Science and Technology. August 30, 2011Google Scholar
  60. Phlips EJ, Monegue RL, Aldridge FJ (1990) Cynophages which impact bloom-forming cyanobacteria. J Aquat Plant Manag 28:92–97Google Scholar
  61. Proctor LM, Fuhrman JA (1990) Viral mortality of marine bacteria and cyanobacteria. Nature 343:60–62CrossRefGoogle Scholar
  62. Raikow DE, Sarnelle O, Wilson AE, Hamilton SK (2004) Dominance of the noxious cyanobacterium Microcystis aeruginosa in low nutrient lakes is associated with exotic zebra mussels. Limnol Oceangr 49:482–487CrossRefGoogle Scholar
  63. Raoult D, Audic S, Robert C, Abergel C, Renesto P, Ogata H, La Scola B, Suzan M, Claverie J-M (2004) The 1.2-megabase genome sequence of mimivirus. Science 306:1344–1350CrossRefGoogle Scholar
  64. Safferman RS (1973) Special methods-virus detection in Cyanophyceae. In: Stein JR (ed) Handbook of phycological methods, culture methods and growth measurements. Cambridge University Press, Cambridge, pp 145–158Google Scholar
  65. Safferman RS, Morris ME (1964) Control of algae with viruses. J Am Water Works Assoc 56:1217–1224Google Scholar
  66. Schirrmeister BE, Antonelli A, Bagheri HC (2011) The origin of multicellularity in cyanobacteria. BMC Evol Biol 11:45.
  67. Schreurs H (1992) Cyanobacterial dominance, relation to eutrophication and lake morphology. Ph.D. Thesis. University of Amsterdam, NetherlandsGoogle Scholar
  68. Science News (2010) UV exposure has increased over the last 30 years, but stabilized since the mid-1990s. Science News Web Accessed 16 Mar 2010
  69. Shaffer JJ, Jacobsen LM, Schrader JO, Lee KW, Martin EL, Kokjohn TA (1999) Characterization of Pseudomonas aeruginosa bacteriophage UNL-1, a bacterial virus with a novel UV-A-inducible DNA damage reactivation phenotype. Appl Environ Microbiol 65:2606–2613Google Scholar
  70. Sigee DC, Glenn R, Andrews MJ, Bellinger EG, Butler RD, Epton HAS, Hendry RD (1999) Biological control of cyanobacteria: principles and possibilities. Hydrobiologia 395(396):161–172CrossRefGoogle Scholar
  71. Singer CE, Ames BN (1970) Sunlight ultraviolet and bacterial DNA base ratios. Science 170:822–826CrossRefGoogle Scholar
  72. Singh P, Singh SS, Srivastava A, Singh A, Mishra AK (2012) Structural functional and molecular basis of cyanophage–cyanobacterial interactions and its significance. Afr J Biotechnol 11:2591–2608Google Scholar
  73. Sinha RP, Häder D-P (2002) UV-induced DNA damage and repair: a review. Photochem Photobiol Sci 1:225–236CrossRefGoogle Scholar
  74. Sinha RP, Singh SC, Häder D-P (1999) Photoecophysiology of cyanobacteria. Recent Res Dev Photochem Photobiol 3:91–101Google Scholar
  75. Sinton LW, Hall CH, Lynch PA, Davies-Colley RJ (2002) Sunlight inactivation of fecal indicator bacteria and bacteriophages from waste stabilization pond effluent in fresh and saline waters. Appl Environ Microbiol 68:1122–1131CrossRefGoogle Scholar
  76. Sode K, Oonari R, Oozeki M (1997) Induction of a temperate marine cyanophage by heavy metal. J Mar Biotechnol 5:178–180Google Scholar
  77. Sommaruga R (2003) UVR and its effects on species interactions. In: Helbling EW, Zagarese HE (eds) UV effects in aquatic organisms and ecosystems. RSC, Cambridge, pp 485–507CrossRefGoogle Scholar
  78. Stewart GSAB, Denyer SP, Jassim SAA (1995) Selective virus culture. PCT patent WO95/023848Google Scholar
  79. Stoddard LI, Martiny JBH, Marston MF (2007) Selection and characterization of cyanophage resistance in marine Synechococcus strains. Appl Environ Microbiol 73:5516–5522CrossRefGoogle Scholar
  80. Sullivan MB, Coleman ML, Weigele P, Rohwer F, Chisholm SW (2005) Three Prochlorococcus cyanophage genomes: signature features and ecological interpretations. PLoS Biol 3(e144):790–806Google Scholar
  81. Sun S, La Scola B, Bowman VD, Ryan CM, Whitelegge JP, Raoult D, Rossmann MG (2010) Structural studies of the Sputnik virophage. J Virol 84:894–897CrossRefGoogle Scholar
  82. Suttle CA (1994) The significance of viruses to mortality in aquatic microbial communities. Microb Ecol 28:237–243CrossRefGoogle Scholar
  83. Suttle CA (2000) Cyanophages and their role in the ecology of cyanobacteria. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria: their diversity in time and space. Kluwer Academic Publishers, Dordrecht, pp 563–589Google Scholar
  84. Suttle CA (2005) Viruses in the sea. Nature 437:356–361CrossRefGoogle Scholar
  85. Suttle CA, Chan AM (1994) Dynamics and distribution of cyanophages and their elect on marine Synechococcus spp. Appl Environ Microbiol 60:3167–3174Google Scholar
  86. Suttle CA, Chen F (1992) Mechanisms and rates of decay of marine viruses in seawater. Appl Environ Microbiol 58:3721–3729Google Scholar
  87. Suttle CA, Chan AM, Cottrell MT (1990) Infection of phytoplankton by viruses and reduction of primary productivity. Nature 347:467–469CrossRefGoogle Scholar
  88. Svobodova AR, Galandakova A, Sianska J, Dolezal D, Lichnovska R, Ulrichova J, Vostalova J (2012) DNA damage after acute exposure of mice skin to physiological doses of UVB and UVA light. Arch Dermatol Res 304:407–412CrossRefGoogle Scholar
  89. The Habitable Planet (2012) Unit 12: Earth’s changing climate. Leaner Web Accessed 2012
  90. Thompson DWJ, Solomon S, Kushner PJ, England MH, Grise KM, Karoly DJ (2011) Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nat Geosci 4:741–749CrossRefGoogle Scholar
  91. Todar K (2012) Bacteriophage. In: Todar’s online textbook of bacteriology. Madison, Wisconsin. Accessed 2012
  92. Tucker S, Pollard P (2005) Identification of vyanophage Ma-LBP and infection of the cyanobacterium Microcystis aeruginosa from an Australian subtropical lake by the virus. Appl Environ Microbiol 71:629–635CrossRefGoogle Scholar
  93. Van Hannen EJ, Zwart G, van Agterveld MP, Gons HJ, Ebert J, Laanbroek HJ (1999) Changes in bacterial and eukaryotic community structure after mass lysis of filamentous cyanobacteria associated with viruses. Appl Environ Microbiol 65:795–801Google Scholar
  94. Vincent WF, Roy S (1993) Solar ultraviolet-B radiation and aquatic primary production: damage, protection, and recovery. Environ Rev 1:1–12CrossRefGoogle Scholar
  95. Walsh JJ, Jolliff JK, Darrow BP, Lenes JM, Milroy SP, Dieterle DA, Carder KL, Chen FR, Vargo GA, Weisberg RH, Fanning KA, Muller-Karger FE, Steidinger KA, Heil CA, Prospero JS, Lee TN, Kirkpatrick GJ, Whitledge TE, Stockwell DA, Tomas CR, Villareal TA, Jochens AE, Bontempi PS (2006) Red tides in the Gulf of Mexico: where, when and why. J Geophys Res 111:C11003CrossRefGoogle Scholar
  96. Walther G-R, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin J-M, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395CrossRefGoogle Scholar
  97. Waterbury JB, Valois FW (1993) Resistance to co-occurring phages enables marine Synechococcus communities to coexist with cyanophages abundant in seawater. Appl Environ Microbiol 59:3393–3399Google Scholar
  98. Weinbauer MG, Rassoulzadegan F (2004) Are viruses driving microbial diversification and diversity? Environ Microbiol 6:1–11CrossRefGoogle Scholar
  99. Weinbauer MG, Wilhelm SW (2011) Marine viruses. In: Gattuso J-P (ed) The encyclopaedia of earth. Accessed 5 Nov 2011
  100. Whitton BA, Potts M (2000) Introduction to cyanobacteria. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria: their diversity in time and space. Kluwer Academic Publishers, Dordrecht, pp 1–11Google Scholar
  101. Wilhelm SW, Smith REH (2000) Bacterial carbon production in Lake Erie is influenced by viruses and solar radiation. Can J Fish Aquat Sci 57:317–326CrossRefGoogle Scholar
  102. Wilhelm SW, Weinbauer MG, Suttle CA, Pledger RJ, Mitchell DL (1998a) Measurements of DNA damage and photoreactivation imply that most viruses in marine surface waters are infective. Aquat Microb Ecol 14:215–222CrossRefGoogle Scholar
  103. Wilhelm SW, Weinbauer MG, Suttle CA, Jeffrey WH (1998b) The role of sunlight in the removal and repair of viruses in the sea. Limnol Oceanogr 43:586–592CrossRefGoogle Scholar
  104. Williamson SJ, Houchin LA, McDaniel L, Paul JH (2002) Seasonal variation in lysogeny as depicted by prophage induction in Tampa Bay, Florida. Appl Environ Microbiol 68:4307–4314CrossRefGoogle Scholar
  105. Wilson WH, Carr NG, Mann NH (1996) The effect of phosphate status on the kinetics of cyanophage infection in the oceanic Cyanobacterium synechococcus sp. WH7803. J Phycol 32:506–516CrossRefGoogle Scholar
  106. Wilson HR, Yu D, Peters HK, Zhou JG, Court DL (2002) The global regulator RNase III modulates translation repression by the transcription elongation factor. N EMBO J 21:4154–4161CrossRefGoogle Scholar
  107. Wommack KE, Colwell RR (2000) Virioplankton: viruses in aquatic ecosystems. Microbiol Mol Biol Rev 64:69–114CrossRefGoogle Scholar
  108. Xu XD, Khudyakov I, Wolk CP (1997) Lipopolysaccharide dependence of cyanophage sensitivity and aerobic nitrogen fixation in Anabaena sp. strain PCC 7120. J Bacteriol 179:2884–2891Google Scholar
  109. Yau S, Lauro FM, Demaere MZ, Brown MV, Thomas T, Raftery MJ, Andrews-Pfannkoch C, Lewis M, Hoffman JM, Gibson JA, Cavicchioli R (2011) Virophage control of antarctic algal host–virus dynamics. Proc Natl Acad Sci USA 108:6163–6168CrossRefGoogle Scholar
  110. Yoshida T, Takashima Y, Tomaru Y, Shirai Y, Takao Y, Hiroishi S, Nagasaki K (2006) Isolation and characterization of a cyanophage infecting the toxic cyanobacterium Microcystis aeruginosa. Appl Environ Microbiol 72:1239–1247CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Applied Bio Research Inc.WindsorCanada

Personalised recommendations