Advertisement

World Journal of Microbiology and Biotechnology

, Volume 29, Issue 10, pp 1773–1781 | Cite as

Andrimid production at low temperature by a psychrotolerant Serratia proteamaculans strain

  • Leandro A. Sánchez
  • Manuel González Sierra
  • Faustino Siñeriz
  • Osvaldo DelgadoEmail author
Original Paper

Abstract

Andrimid, a known non-ribosomal pseudo-peptide antibiotic, was isolated from a psychrotolerant Serratia proteamaculans strain. The antibiotic peptide was produced at low temperature (8 °C) in a 7.5 l BIOFLO 101 bioreactor under batch culture mode. Andrimid activity from S. proteamaculans culture was only detected at 25 °C and below and potent antibacterial activity was revealed against both, pathogenic and non-pathogenic bacteria. Minimal inhibitory concentration values determined by microdilution experiments varied in the range between 0.01 and 0.78 μg/ml. Antimicrobial purification and structure elucidation were carried out by LC-MS/MS and 1H/13C NMR approaches. The effects on the ultrastructure of sensitive Escherichia coli 35,218 cells were observed by transmission electron microscopy at different inhibition stages. This work demonstrated the significance of bioprospection from cold environments through the screening of microorganisms with ability to produce cold-active biomolecules of biotechnological interest. S. proteamaculans 136 was revealed as a novel microbial source for andrimid production at low temperatures, showing biotechnological potential to be applied in cryopreservation, food or cosmetic industries against pathogenic bacteria.

Keywords

Andrimid Psychrotolerant Serratia proteamaculans Antimicrobial Pseudo-peptide 

Supplementary material

11274_2013_1338_MOESM1_ESM.tif (1.1 mb)
Supplementary material 1 (TIFF 1143 kb)
11274_2013_1338_MOESM2_ESM.tif (7.2 mb)
Supplementary material 2 (TIFF 7348 kb)
11274_2013_1338_MOESM3_ESM.pdf (159 kb)
Supplementary material 3 (PDF 159 kb)

References

  1. Antranikian G, Vorgias CE, Bertoldo C (2005) Extreme environments as a resource for microorganisms and novel biocatalysts. Adv Biochem Eng Biotechnol 96:219–262Google Scholar
  2. Aravalli RN, She Q, Garrett RA (1998) Archaea and the new age of microorganisms. Trends Ecol Evol 13:190–194CrossRefGoogle Scholar
  3. Böcker S, Letzel MC, Liptak Z, Pervukhin A (2009) SIRIUS: decomposing isotope patterns for metabolite identification. Bioinformatics 25:218CrossRefGoogle Scholar
  4. Davies J, Webb V (1998) Antibiotic resistance in bacteria. In: Krause RM (ed) Emerging infections. Biomedical research reports San Diego. Academic Press, CAGoogle Scholar
  5. Feller G, Zekhnini Z, Lamotte-Brasseur J, Gerday C (1997) Enzymes from cold-adapted microorganisms the class C ß-lactamase from the antarctic psychrophile Psychrobacter immobilis A5. Eur J Biochem 244:186–191CrossRefGoogle Scholar
  6. Fischbach MA (2009) Antibiotics from microbes: converging to kill. Curr Opin Microbiol 12:520–527CrossRefGoogle Scholar
  7. Fredenhagen A, Tamure SY, Kenny PTM, Komura H, Naya Y, Nakanishi K (1987) Andrimid, a new peptide antibiotic produced by an intracellular bacterial symbiont isolated from a brown planthopper. J Am Chem Soc 109:4409–4411CrossRefGoogle Scholar
  8. Freiberg C, Brunner N, Schiffer G, Lampe T, Pohlmann J, Brands M, Raabe M, Häbich D, Ziegelbauer K (2004) Identification and characterization of the first class of potent bacterial acetyl-CoA carboxylase inhibitors with antibacterial activity. J Biol Chem 279:26066–26073CrossRefGoogle Scholar
  9. Gootz TD (1990) Discovery and development of new antimicrobial agents. Clin Microbiol Rev 1:13–31Google Scholar
  10. Hacker J, Blum-Oehler G, Mühldorfer I, Tschäpe H (1997) Pathogenicity islands of virulent bacteria: structure, function and impact on microbiol evolution. Mol Microbiol 23:1089–1097CrossRefGoogle Scholar
  11. Holden MTG, Feil EJ, Lindsay JA, Peacock SJ, Day NP, Enright MC, Foster TJ, Moore CE, Hurst L, Atkin RA, Barron A, Bason N, Bentley SD, Chillingworth C, Chillingworth T, Churcher C, Clark L, Corton C, Cronin A, Doggett J, Dowd L, Feltwell T, Hance Z, Harris B, Hauser H, Holyroyd S, Jagels K, James KD, Lennard N, Line A, Mayes R, Moule S, Mungall K, Ormond D, Quail MA, Raddinowitsch E, Rutherford K, Sanders M, Sharp S, Simmonds M, Stevens K, Whitehead S, Barrell BG, Parkhill J (2004) Complete genomes of two clinical Staphylococcus aureus strains: evidence for the rapid evolution of virulence and drug resistance. Proc Natl Acad Sci USA 101:9786–9791CrossRefGoogle Scholar
  12. Hugenholtz P, Pace NR (1996) Identifying microbial diversity in the natural environment: a molecular phylogenetic approach. Trends Biotechnol 14:190–197CrossRefGoogle Scholar
  13. Jin M, Fischbach MA, Clardy J (2006) A biosynthetic gene cluster for the acetyl-CoA carboxylase inhibitor andrimid. J Am Chem Soc 128:10660–10661CrossRefGoogle Scholar
  14. Kabuki T, Uenishi H, Watanabe M, Seto Y, Nakajima H (2007) Characterization of a bacteriocin, Thermophilin 1277, produced by Streptococcus thermophilus SBT1277. J Appl Microbiol 102:971–980Google Scholar
  15. Liu XY, Fortin PD, Walsh CT (2008) Andrimid producers encode an acetyl-CoA carboxyltransferase subunit resistant to the action of the antibiotic. Proc Natl Acad Sci USA 105:13321–13326CrossRefGoogle Scholar
  16. Long RA, Rowley DC, Zamora E, Liu JY, Bartlett DH, Azam F (2005) Antagonistic interactions among marine bacteria impede the proliferation of Vibrio cholerae. Appl Environ Microbiol 71:8531–8536CrossRefGoogle Scholar
  17. Mansson M, Gram L, Larsen TO (2011) Production of bioactive secondary metabolites by marine Vibrionaceae. Marine drugs 9:1440–1468CrossRefGoogle Scholar
  18. Matsuyama T, Murakami T, Fujita M, Fujita S, Yano I (1986) Extracellular vesicle formation and biosurfactant production by Serratia marcescens. J Gen Microbiol 132:865–875Google Scholar
  19. Matsuyama T, Bhasin A, Harshey RM (1995) Mutational analysis of flagellum-independent surface spreading of Serratia marcescens 274 on a low-agar medium. J Bacteriol 177:987–991Google Scholar
  20. Mayr-Harting A, Hedges A, Berkeley RCW (1972) Methods for studying bacteriocins. In: Norris JR, Ribbons DW (eds) Methods in microbiology 7a. Academic Press, London, pp 315–422Google Scholar
  21. Needham J, Kelly MT, Ishige M, Andersen RJ (1994) Andrimid and moiramides A-C, metabolites produced in culture by a marine isolate of the bacterium Pseudomonas fluorescens: structure elucidation and biosynthesis. J Org Chem 59:2058–2063CrossRefGoogle Scholar
  22. Neumann S, Böcker S (2010) Computational mass spectrometry for metabolomics Identification of metabolites and small molecules. Anal Bioanal Chem 398:2779–2788CrossRefGoogle Scholar
  23. O’Brien A, Sharp R, Russell N, Roller S (2004) Antarctic bacteria inhibit growth of food-borne microorganisms at low temperatures. FEMS Microbiol Ecol 48:157–167CrossRefGoogle Scholar
  24. Oclarit JM, Okada H, Ohta S, Kaminura K, Yamaoka Y, Lizuka T, Miyashiro S, Ikegami S (1994) Anti-bacillus substance in the marine sponge, Hyatella species, produced by an associated Vibrio species bacterium. Microbios 78:7–16Google Scholar
  25. Pesciaroli C, Cupini F, Selbmann L, Barghini P (2012) Temperature preferences of bacteria isolated from seawater collected in Kandalaksha Bay, White Sea, Russia. Polar Biol 35:435–445CrossRefGoogle Scholar
  26. Pohlmann J, Lampe T, Shimada M, Nell PG, Pernerstorfer J, Svenstrup N, Brunner NA, Schiffer G, Freiberg C (2005) Pyrrolidinedione derivatives as antibacterial agents with a novel mode of action. Bioorg Med Chem Lett 15:1189–1192CrossRefGoogle Scholar
  27. Prangishvili D, Holz I, Stieger E, Nickell S, Kristjansson JK, Zillig W (2000) Sulfolobicins, specific proteinaceous toxins produced by strains of the extremophilic archaeal genus Sulfolobus. J Bacteriol 182:2985–2988CrossRefGoogle Scholar
  28. Sánchez LA, Gomez FF, Delgado OD (2009) Cold-adapted microorganisms as a source of new antimicrobials. Extremophiles 13:111–120CrossRefGoogle Scholar
  29. Sánchez LA, Hedström M, Delgado M, Delgado OD (2010) Production, purification and characterization of Serraticin A, a novel cold-active antimicrobial produced by Serratia proteamaculans 136. J Appl Microbiol 109:936–945CrossRefGoogle Scholar
  30. Savino JM, Sanchez LA, Saguir FM, Manca de Nadra MC (2012) Lactic acid bacteria isolated from apples are able to catabolise arginine. World J Microbiol Biotechnol 28:1003–1012CrossRefGoogle Scholar
  31. Singh MP, Menendez AT, Petersen PJ, Ding WD, Maiese WM, Greenstein M (1997) Biological and mechanistic activities of phenazine antibiotics produced by culture LL-14I352. J Antibiot 50:785–787CrossRefGoogle Scholar
  32. Smith-Palmer A, Stewart J, Fyfe L (1998) Antimicrobial properties of plant essential oils and essences against five important food-borne pathogens. Lett Appl Microbiol 26:118–122CrossRefGoogle Scholar
  33. Souza NJ, Ganguli BN, Reden J (1982) Strategies in the discovery of drugs from natural sources. Annu Rep Med Chem 17:301–310CrossRefGoogle Scholar
  34. Spizek J, Novotna J, Rezanka T, Demain AL (2010) Do we need new antibiotics? The search for new targets and new compounds. J Ind Microbiol Biotechnol 37:1241–1248CrossRefGoogle Scholar
  35. Szczepanowski R, Braun S, Riedel V, Schneiker S, Krahn I, Puhler A, Schlüter A (2005) The 120 592 bp IncF plasmid pRSB107 isolated from a sewage-treatment plant encodes nine different antibiotic-resistance determinants, two iron-acquisition systems and other putative virulence-associated functions. Microbiology 151:1095–1111CrossRefGoogle Scholar
  36. Tanaka Y, Yuasa J, Baba M, Tanikawa T, Nakagawa Y, Matsuyama T (2004) Temperature-dependent bacteriostatic activity of Serratia marcescens. Microbes Environ 19:236–240CrossRefGoogle Scholar
  37. Thomson NR, Crow MA, Crow SJ, McGowan A, Salmond GPC (2000) Biosynthesis of carbapenem antibiotic and prodigiosin pigment in Serratia is under quorum sensing control. Mol Microbiol 36:539–556CrossRefGoogle Scholar
  38. Venable JH, Coggeshall R (1965) A simplified lead citrate stain for electron microscopy. J Cell Biol 25:407–408CrossRefGoogle Scholar
  39. Wenzel RP (2004) The antibiotic pipeline challenges, costs, and values. New Engl J Med 351:523–526CrossRefGoogle Scholar
  40. Wietz M, Mansson M, Gotfredsen CH, Larsen TO, Gram L (2010) Antibacterial compounds from marine Vibrionaceae isolated on a global expedition. Mar Drugs 8:2946–2960CrossRefGoogle Scholar
  41. Wietz M, Månsson M, Gram L (2011) Chitin stimulates production of the antibiotic andrimid in a Vibrio coralliilyticus strain. Environ Microbiol Rep 3(5):559–564CrossRefGoogle Scholar
  42. Williams RP, Quadri SMH (1980) The pigment of Serratia. In: von Gravenitz A, Rubin SJ (eds) The genus Serratia. CRC Press, Boca Raton, Fla, pp 31–75Google Scholar
  43. Yaron S, Rydlo T, Shachar D, Mor A (2003) Activity of dermaseptin K4–S4 against foodborne pathogens. Peptides 24:1815–1821CrossRefGoogle Scholar
  44. Yu VL (1979) Serratia marcescens, historical perspective and clinical review. New Engl J Med 300:887–893CrossRefGoogle Scholar
  45. Zahner H, Fielder HP (1995) The need for new antibiotics: possible ways forward In: Hunter PA, Darby GK, Russell NJ (eds) Fifty years of antimicrobials: past perspectives and future trends. Cambridge SGM Symp, vol. 53. Cambridge University Press, pp 67–83 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Leandro A. Sánchez
    • 1
  • Manuel González Sierra
    • 2
  • Faustino Siñeriz
    • 1
  • Osvaldo Delgado
    • 1
    Email author
  1. 1.PROIMI-CONICETSan Miguel de TucumánArgentina
  2. 2.Fac. de Cs Bioq. y Farm., IQUIRUNRRosarioArgentina

Personalised recommendations