Skip to main content
Log in

Microbial community biogeographic patterns in the rhizosphere of two Brazilian semi-arid leguminous trees

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Arid environments are regular and well distributed over all continents and display drought characteristics whether full-time or seasonal. This study aims to characterize how the microbial communities of the rhizosphere of two leguminous trees from the Brazilian semi-arid biome the Caatinga are geographically and seasonally shaped, as well as the factors driving this variation. With that purpose, the soil rhizosphere from two leguminous trees (Mimosa tenuiflora and Piptadenia stipulacea (Benth.) Ducke) were sampled in two different seasons: rainy and drought at five different sites. Assessment of bacterial and archaeal communities occurred by T-RFLP analysis of 16S rRNA and archaeal amoA genes. By these means, it was observed that the seasons (wet and dry periods) are the factors that most influence the composition of the microbial community from both analyzed plants, except for the results obtained from the CCA applied to Archaeas. Furthermore, soil physical–chemical factors also had a significant influence on the community and indicated a geographical pattern of the bacterial community. It was not possible to observe significant modifications in the composition in relation to the plant species. We have seen that soil characteristics and rainfall were the factors that most influenced the microbial composition. Also, the bacterial community had a significant correlation with soil characteristics that indicates that these rhizosphere communities might be selected by environmental characteristics. Furthermore, the data suggest that climate plays a key role in structuring the microbial community of this biome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ab’sáber AN (2003) Os domínios da natureza no Brasil: potencialidades paisagísticas. 2nd edn. Ateliê Editorial, São Paulo

  • Andrade L, Gonzaleza AM, Araujoa FV, Paranhos R (2003) Flow cytometry assessment of bacterioplankton in tropical marine environments. J Microbiol Meth 55:841–850

    Google Scholar 

  • Andreote FD, Azevedo JL, Araújo WL (2009) Assessing the diversity of bacterial communities associated with plants. Braz J Microbiol 40:417–432

    Google Scholar 

  • Azovsky AI (2002) Size-dependent species-area relationships in benthos: is the world more diverse for microbes? Ecography 25:273–282

    Article  Google Scholar 

  • Baas-Becking LGM (1934) Geobiologie of inleiding tot de milieukunde. Van Stockum and Zoon, The Hague

    Google Scholar 

  • Bachar A, Al-Ashhab A, Soares MI, Sklarz MY, Angel R, Ungar ED, Gillor O (2010) Soil Microbial Abundance and Diversity Along a Low Precipitation Gradient. Microbiol Ecol 60:453–461

    Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  CAS  Google Scholar 

  • Baldwin DS, Mitchell AM (2000) The effects of drying and re-flooding on sediment and soil nutrient dynamics of lowland river-floodplain systems: a synthesis. Regul Rivers 16:457–467

    Article  Google Scholar 

  • Belay-Tedla A, Zhou X, Su B, Wan S, Luo Y (2009) Labile, recalcitrant, and microbial carbon and nitrogen pools of a tallgrass prairie soil in the US Great Plains subjected to experimental warming and clipping. Soil Biol Biochem 41:110–116

    Article  CAS  Google Scholar 

  • Beveridge TJ, Hughes MN, Lee H, Leung KT, Poole RK, Savvaides I, Silver S, Trevors JT (1997) Metal-microbe interactions: contemporary approaches. Adv Microbiol Physiol 38:177–243

    Article  CAS  Google Scholar 

  • Bonilla I, Garcia-Gonzalez M, Mateo P (1990) Boron requirement in cyanobacteria. Plant Physiol 94:1554–1560

    Article  CAS  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (2000) Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol, Ottawa 46(3):237–245

    Google Scholar 

  • Casamayor EO, Massana R, Benlloch S, Øvreås L, Díez B, Goddard VJ, Gasol JM, Joint I, Rodríguez-Valera F, Pedrós-Alió C, et al (2002) Changes in archaeal, bacterial and eukaryal assemblages along a salinity gradient by comparison of genetic fingerprinting methods in a multipond solar saltern [Internet]. Environ Microbiol 4:338–348

    Google Scholar 

  • Collins SL, Sinsabaugh RL, Crenshaw C, Green L, Porras-Alfaro A, Stursova M, Zeglin LH (2008) Pulse dynamics and microbial processes in aridland ecosystems. J Ecol 96:413–420

    Article  Google Scholar 

  • Curtis TP, Head IM, Lunn M, Woodcock S, Schloss PD, Sloan WT (2006) What is the extent of prokaryotic diversity? Philos Trans R Soc Lond B Biol Sci 361:2023–2037

    Article  Google Scholar 

  • Dunitz J, Hawley D, Miklos D, White D, Berlin Y, Marusic R, Prelog V (1971) Structure of boromycin. Helv Chim Acta 54:1709–1713

    Article  CAS  Google Scholar 

  • Easterling D, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000) Climate extremes: observations, modeling, and impacts. Science 289:2068–2074

    Article  CAS  Google Scholar 

  • Edwards U, Rogall T, Blocker H, Emde M, Bottger EC (1989) Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 17:7843–7853

    Article  CAS  Google Scholar 

  • Ettema CH, Wardle DA (2002) Spatial soil ecology. Trends Ecol Evol 17:177–183

    Google Scholar 

  • Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. P Natl Acad Sci USA, Washington 103:626–631

    Google Scholar 

  • Fierer N, Schimel JP, Holden PA (2003) Influence of drying-rewetting frequency on soil bacterial community structure. Microb Ecol 45:63–71

    Article  CAS  Google Scholar 

  • Foissner W (2008) Protist diversity and distribution: some basic considerations. Biodivers Conserv 17:235–242

    Article  Google Scholar 

  • Francis CA, Roberts KJ, Beman JM, Santoro AEE, Oakley BBB (2005) Ubiquity and diversity of ammoniaoxidizing archaea in water columns and sediments of the ocean [Internet]. Proceedings of the National Academy of Sciences of the United States of America 102:14683

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol, Ottawa 41:109–117

    Google Scholar 

  • Gyaneshwar P, Kumar GN, Parekh LJ, Poole PS (2002) Role of soil microorganisms in improving P nutrition of plants. Plant Soil, The Hague 245:83–93

  • Hewson I, Fuhrman JA (2004) Richness and diversity of bacterioplankton species along an estuarine gradient in Moreton Bay, Australia. Appl Environ Microb 70:3425–3433

    Google Scholar 

  • Horner-Devine MC, Lage M, Hughes JB, Bohannan BJM (2004) A taxa–area relationship for bacteria. Nature 432:750–753

    Google Scholar 

  • Irschik H, Schummer D, Gerth K, Hofle G, Reichenbach H (1995) The tartrolons, new boron-containing antibiotics from a myxobacterium, Sorangium cellulosum. J Antibiot 48:26–30

    Article  CAS  Google Scholar 

  • Jesus EC, Marsh TL, Tiedje JM, Moreira FMS (2009) Changes in land use alter structure of bacterial communities in Western Amazon soils. ISME J Heteren 3:1004–1011

    Google Scholar 

  • Kemnitz D, Kolb S, Conrad R (2007) High abundance of Crenarchaeota in a temperate acidic forest soil. FEMS Microbiol Ecol 60:442–448

    Article  CAS  Google Scholar 

  • Leal IR, Tabarelli M, Silva JMC da (2005) Ecologia e conservação da caatinga. 2nd edn. Recife, Universitária da UFPE 822

  • Le Houerou HN (1996) Climate change, drought and desertification. J Arid Environ 34:133–185

    Article  Google Scholar 

  • Lindberg N, Bengtsson J, Persson T (2002) Effects of experimental irrigation and drought on the composition and diversity of soil fauna in a coniferous stand. J Appl Ecol 39:924–936

    Article  Google Scholar 

  • Liu W, Zhang Z, Wan S (2009) Predominant role of water in regulating soil and microbial respiration and their responses to climate change in a semiarid grassland. Glob Change Biol 15:184–195

    Article  Google Scholar 

  • Locey KJ (2010) Synthesizing traditional biogeography with microbial ecology: the importance of dormancy. J Biogeogr 37:1835–1841

    Google Scholar 

  • Lynch J, Hobbie JE (1988) Micro-organisms action: concepts and applications in microbial ecology, 2nd edn. Blackwell, Oxford

    Google Scholar 

  • Marshall BJ, Armstrong JA, Francis GJ, Nokes NT, Wee SH (1987) Antibacterial action of bismuth in relation to Campylobacter pyloridis colonization and gastritis. Digestion 37(Suppl. 2):16–30

    Article  Google Scholar 

  • Martiny JBH, Bohannan BJM, Brown JH, Colwell RK, Fuhrman JA, Green JL, Horner-Devine MC, Kane M, Krumins JA, Kuske CR, Morin PJ, Naeem S, Øvreås L, Reysenbach A, Smith VH, Staley JT (2006) Microbial biogeography: putting microorganisms on the map. Nat Rev 4:102–112

    CAS  Google Scholar 

  • Mendes LW (2009) Análise molecular das estruturas e diversidade de comunidades microbianas em solo de manguezal preservado da Ilha do Cardoso-SP. Thesis (Master), Piracicaba

  • Nielsen UN, Osler GHR, Campbell CD, Burslem DFRP, van der Wal R (2010) The influence of vegetation type, soil properties and precipitation on the composition of soil mite and microbial communities at the landscape scale. J Biogeogr 37:1317–1328

    Article  Google Scholar 

  • Nozela EF (2006) Valor Nutricional De Espécies Arbóreo-Arbustivas nativas da caatinga e utilização de tratamentos físico-químicos para redução do teor de taninos. Thesis (Doctor) – Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba

  • O’Malley MA. (2008) ‘Everything is everywhere: but the environment selects’: ubiquitous distribution and ecological determinism in microbial biogeography. Stud Hist Philos Biol Biomed Sci 39:314–325

    Google Scholar 

  • O’Neill M, Eberhard S, Albersheim P, Darvill A (2001) Requirement of borate cross-linking of cell wall rhamnogalacturonan II for Arabidopsis growth. Science 294:846–849

    Article  Google Scholar 

  • Ochsenreiter T, Selezi D, Quaiser A, Bonch-Osmolovskaya L, Schelper C (2003) Diversity and abundance of Crenarchaeota in terrestrial habitats studied by 16S RNA surveys and real time PCR. Environ Microbiol 7(12):1967–1984

    Google Scholar 

  • Pedrós-Alió C (2006) Marine microbial diversity: can it be determined? Trends Microbiol 14:257–263

    Article  Google Scholar 

  • Pointing SB, Belnap J (2012) Microbial colonization and controls in dryland systems. Nature Reviews 10:551–562

    Google Scholar 

  • Queiroz LP (2006) Leguminosas da Caatinga. Universidade Estadual de Feira de Santana 913

  • Quispel A (1998) Lourens GM Baas Becking (1985–1963). Inspirator for many (micro)biologists. Int Microbiol 1:69–72

    CAS  Google Scholar 

  • Ramette A, Tiedje JM (2007) Multiscale responses of microbial life to spatial distance and environmental heterogeneity in a patchy ecosystem. Proc Natl Acad Sci USA 104:2761–2766

    Google Scholar 

  • Rinnan R, Michelsen A, Bååth E, Jonasson S (2007) Fifteen years of climate change Manipulations alter soil microbial communities in a subarctic heath ecosystem. Glob Change Biol 13:28–39

    Article  Google Scholar 

  • Rotthauwe JH, Witzel KP, Liesack W (1997) The ammonia monooxygenase structural gene amoA as a functional marker: Molecular fine-scale analysis of natural ammonia-oxidizing populations [Internet]. App Environ Microbiol 63:4704–4712

    Google Scholar 

  • Schimel J, Balser TC, Wallenstein MD (2007) Microbial stress-response physiology and its implications for ecosystem function. Ecology 88:1386–1394

    Article  Google Scholar 

  • Seager R, Ting M, Held I, Kushnir Y et al (2007) Model of an imminent transition to a more arid climate in southwestern North America. Science 316:1181–1184

    Article  CAS  Google Scholar 

  • Servais P, Casamayor EO, Courties C, Catala P, Parthuisot N, Lebaron P (2003) Activity and diversity of bacterial cells with high and low nucleic acid content. Aquat Microb Ecol 33:41–51

    Google Scholar 

  • Silva JMC, Tabarelli MT, Fonseca MT, Lins LV (2004): Biodiversidade da caatinga: áreas e ações prioritárias para conservação. Ministério do Meio Ambiente

  • Stark JM, Firestone MK (1995) Mechanisms for soil-moisture effects on activity of nitrifying bacteria. Appl Environ Microbiol 61:218–221

    CAS  Google Scholar 

  • Thatcher R (1934) A proposed classification of the chemical elements with respect to their function in plant nutrition. Science 79:463–466

    Google Scholar 

  • Tinker PB (1984) The role of microorganisms in mediating and facilitating the uptake of plant nutrients from soil. Plant Soil, The Hague 76(1/3):77–91

    Google Scholar 

  • Trovão DMB, Fernandes PD, de Andrade LA, Neto JD (2007) Variações sazonais de aspectos fisiológicos de espécies da Caatinga. Rev Bras Eng Agríc Amb 11:307–311

    Google Scholar 

  • Veblen TT, Young KR, Orme AR (2007) The physical geography of South America. Oxford University Press: New York.

  • Vieira RP, Clementino MM, Cardoso AM, Oliveira DN, Albano RM, Gonzalez, AM, Paranhos R, Martins OB (2007) Archaeal communities in a tropical estuarine ecosystem: Guanabara Bay, Brazil. Microbial Ecol 54(3):460–468

    Google Scholar 

  • Wardle D (2006) The influence of biotic interactions on soil biodiversity. Ecol Lett 9:870–886

    Google Scholar 

  • Williams MA, Rice CW (2007) Seven years of enhanced water availability influences the physiological, structural, and functional attributes of a soil microbial community. Appl Soil Ecol 35:535–545

    Article  Google Scholar 

  • Yair A, Veste M, Almog R, Breckle SW (2008) Sensitivity of a sandy area to climate change along a rainfall gradient at a desert fringe. Arid Dune Ecosystems – The Nizzana Sands in the Negev Desert, Ecol Stud Series, Springer, Berlin. 200:425–440

  • Yang Z, Hayakawa T, Inoue N (2008) Methane emission peak observed at predawn in tropical paddy field: a case study of Hainan Island, China. Journal of the Faculty of Agriculture Shinshu University, Japan 01(44)

  • Zhang W, Parker KM, Luo Y, Wan S, Wallace LL, Hu S (2005) Soil microbial responses to experimental warming and clipping in a tallgrass prairie. Glob Change Biol 11:266–277

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of Cosme Corrêa dos Santos (UEFS) and Jorge Yoshio Tamashiro (UNICAMP) on identifying the plant species Mimosa tenuiflora and Piptadenia stipulacea (Benth.) Ducke, respectively. RGT was a recipient of a postdoctoral grant from FAPESP (2010/50799-7). This study was supported by Embrapa. The authors thank João Luiz da Silva, Rodrigo Mendes and Suikinai Santos for the support during sampling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Gouvêa Taketani.

Additional information

Milena Duarte Lançoni and Rodrigo Gouvêa Taketani share first authorship.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 56 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lançoni, M.D., Taketani, R.G., Kavamura, V.N. et al. Microbial community biogeographic patterns in the rhizosphere of two Brazilian semi-arid leguminous trees. World J Microbiol Biotechnol 29, 1233–1241 (2013). https://doi.org/10.1007/s11274-013-1286-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-013-1286-4

Keywords

Navigation