Skip to main content

Advertisement

Log in

Antimicrobial potential of deep surface sediment associated bacteria from the Sea of Japan

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The aim of this study was to survey microorganisms from the deep surface sediment samples collected from the Sea of Japan and to screen them for antimicrobial and antagonistic effects. Phylogenetic analysis revealed most isolates sharing 98–100 % sequence similarity to recognized species, including those recovered previously from marine or saline environments. Alteromonas, Halomonas, Marinobacter, Pseudoalteromonas, Salinicola, within the class Gammaproteobacteria, Sulfitobacter (Alphaproteobacteria), Bacillus, Paenibacillus and Paenisporosarcina (Firmicutes), Nocardiopsis and Streptomyces (Actinobacteria) occurred abundantly in all sediment samples. Antimicrobial screening revealed twenty three strains (13 %) capable to inhibit growth of one to eight test cultures and deep sediment isolates. Based on phylogenetic analysis mostly active strains belonged to the genera Bacillus, Brevibacillus, Nocardiopsis, Paenibacillus and Streptomyces. Antimicrobial substances (1–3) were isolated from strain Paenibacillus sp. Sl 79w showing a high inhibitory activity. On the basis of combined spectral analyses (IR, UV, 1H and 13C NMR) the compounds 1, 2 and 3 with [M + H]+ at 409.1 and 409.2 m/z, and with [M + Na]+ at 822.5 m/z were found to have a carbon skeleton of isocoumarin and peptide antibiotics, respectively. Our findings demonstrated that the deep surface sediments of the Sea of Japan represent an untapped source of diverse microorganisms capable of antimicrobial metabolite production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Bowman JP, McCuaig RD (2003) Biodiversity, community structural shifts, and biogeography of prokaryotes within Antarctic continental shelf sediment. Appl Environ Microbiol 69:2463–2483

    Article  CAS  Google Scholar 

  • Bredholt H, Fjaervik E, Johnsen G, Zotchev SB (2008) Actinomycetes from sediments in the Trondheim Fjord, Norway: diversity and biological activity. Mar Drugs 6:12–24

    Article  Google Scholar 

  • Bull AT, Stach JEM (2007) Marine actinobacteria: new opportunities for natural product search and discovery. Trends Microbiol 15:491–499

    Article  CAS  Google Scholar 

  • Gärtner A, Ohlendorf B, Schulz D, Zinecker H, Wiese J, Imhoff JF (2011) Levantilides A and B, 20-membered macrolides from a Micromonospora strain isolated from the Mediterranean deep sea sediment. Mar Drugs 9:98–108. doi:10.3390/md9010098

    Article  Google Scholar 

  • Hamdache A, Lamarti A, Aleu J, Collado IG (2011) Non-peptide metabolites from the genus Bacillus. J Nat Prod 74:893–899

    Article  CAS  Google Scholar 

  • Jeong S-Y, Shin HJ, Kim TS, Lee H-S, Park S-K, Kim HM (2006) Streptokordin, a new cytotoxic compound of the methylpyridine class from a marine-derived Streptomyces sp. KORDI-3238. J Antibiot 59:234–240

    Article  CAS  Google Scholar 

  • Kouridaki I, Polymenakou PN, Tselepides A, Mandalakis M, Smith KL Jr (2010) Phylogenetic diversity of sediment bacteria from the deep Northeastern Pacific Ocean: a comparison with the deep Eastern Mediterranean Sea. Int Microbiol 13:143–150

    CAS  Google Scholar 

  • Lauro FM, Bartlett DH (2008) Prokaryotic lifestyles in deep sea habitats. Extremophiles 12:15–25

    Article  Google Scholar 

  • Li L, Kato C, Horikoshi K (1999) Bacterial diversity in deep-sea sediments from different depths. Biodiv Conserv 8:659–677

    Article  Google Scholar 

  • Li H, Yu Y, Luo W, Zeng Y, Chen B (2009) Bacterial diversity in surface sediments from the Pacific Arctic Ocean. Extremophiles 13:233–256

    Article  CAS  Google Scholar 

  • Manam RR, Teisan S, White DJ, Nicholson B, Grodberg J, Neuteboom STC, Lam KS, Mosca DA, Lloyd GK, Potts BCM (2005) Lajollamycin, a nitro-tetraene spiro-β-lactone-γ-lactam antibiotic from the marine actinomycete Streptomyces nodosus. J Nat Prod 68:240–243

    Article  CAS  Google Scholar 

  • Morikawa M, Daido H, Takao T, Murata S, Shimonishi Y, Imanaka T (1993) A new lipopeptide biosurfactant produced by Arthrobacter sp. strain MIS38. J Bacteriol 175:6459–6466

    CAS  Google Scholar 

  • Nakashima T, Anzai K, Suzuki R, Kuwahara N, Takeshita S, Kamanoto A, Ando K (2009) Productivity of bioactive compounds in Streptomyces species isolated from Nagasaki marine environments. Actinomycetologica 23:16–20

    Article  Google Scholar 

  • Okazaki H, Kishi T, Beppu T, Arima K (1975) Letter: a new antibiotic, baciphelacin. J Antibiot 28:717–719

    Article  CAS  Google Scholar 

  • Pearson W, Lipman DJ (1988) Improved tools for biological sequence comparison. Proc Natl Acad Sci USA 85:2444–2448

    Article  CAS  Google Scholar 

  • Pettit RK (2011) Culturability and secondary metabolite diversity of extreme microbes: expanding contribution of deep sea and deep-sea vent microbes to natural product discovery. Mar Biotechnol 13:1–11

    Article  CAS  Google Scholar 

  • Romanenko LA, Schumann P, Rohde M, Lysenko AM, Mikhailov VV, Stackebrandt E (2002) Psychrobacter submarinus sp. nov. and Psychrobacter marincola sp. nov., psychrophilic halophiles from marine environments. Int J Syst Evol Microbiol 52:1291–1297

    CAS  Google Scholar 

  • Romanenko LA, Uchino M, Frolova GM, Tanaka N, Kalinovskaya NI, Latyshev N, Mikhailov VV (2007) Sphingomonas molluscorum sp. nov., a novel marine isolate with antimicrobial activity. Int J Syst Evol Microbiol 57:358–363

    Article  Google Scholar 

  • Romanenko LA, Uchino M, Kalinovskaya NI, Mikhailov VV (2008) Isolation, phylogenetic analysis and screening of marine mollusc-associated bacteria for antimicrobial, hemolytic and surface activities. Microbiol Res 163:633–644

    Article  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  Google Scholar 

  • Sato T, Nagai K, Suzuki K, Morioka M, Saito T (1992) A new isocoumarin antibiotic, Y-05460 M-A. J Antibiot 45:1949–1952

    Article  CAS  Google Scholar 

  • Shida O, Takagi H, Kadowaki K, Nakamura LK, Komagata K (1997) Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int J Syst Bacteriol 47:289–298

    Article  CAS  Google Scholar 

  • Shin J, Seo Y, Lee HS, Rho JR, Mo SJ (2003) A new cyclic peptide from a marine derived bacterium of the genus Nocardiopsis. J Nat Prod 66:883–884

    Article  CAS  Google Scholar 

  • Soria-Mercado IE, Prieto-Davo A, Jensen PR, Fenical W (2005) Antibiotic terpenoid chloro-dihydroquinones from a new marine actinomycete. J Nat Prod 68:904–910

    Article  CAS  Google Scholar 

  • Stackebrandt E, Ebers J (2006) Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 45:153–155

    Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. doi:10.1093/molbev/msr121

    Google Scholar 

  • Thompson JD, Gibson TJ, Higgins DG (2002) Multiple sequence alignment using ClustalW and ClustalX. Chap 2. In: Baxevanis AD, Stein LD, Stormo GD (eds) Current protocol bioinformatics, Wiley, New York, unit 2. 3. 1–2. 3. 22

  • Urakawa H, Kita-Tsukamoto K, Ohwada K (1999) Microbial diversity in marine sediments from Sagami Bay and Tokyo Bay, Japan, as determined by 16S rRNA gene analysis. Microbiology 145:3305–3315

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank all participants of Russian-German deep-sea expedition (SoJaBio), R/V Akademik Lavrentyev 51st Cruise, for providing the sediment samples; to thank Dr. Claudine Vereecke, BCCM™/LMG Bacteria Collection, Ghent University, Gent, Belgium, and Dr. Chantal Bizet, the Collection de l’Institut Pasteur, Institut Pasteur, CIP, Paris, France, for providing indicator strains. This study was supported by a grant no. 11-04-98538 from the Russian Foundation for Basic Research (RFBR) and Far-Eastern Branch of Russian Academy of Sciences, by a grant no. 12-III-A-06-105 from the Presidium of Far-Eastern Branch of Russian Academy of Sciences and by a grant no. 11-04-00781-a from the RFBR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lyudmila A. Romanenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romanenko, L.A., Tanaka, N., Kalinovskaya, N.I. et al. Antimicrobial potential of deep surface sediment associated bacteria from the Sea of Japan. World J Microbiol Biotechnol 29, 1169–1177 (2013). https://doi.org/10.1007/s11274-013-1276-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-013-1276-6

Keywords

Navigation