Skip to main content

From crude glycerol to carotenoids by using a Rhodotorula glutinis mutant

Abstract

In this work eighteen red yeasts were screened for carotenoids production on glycerol containing medium. Strain C2.5t1 of Rhodotorula glutinis, that showed the highest productivity, was UV mutagenized. Mutant 400A15, that exhibited a 280 % increase in β–carotene production in respect to the parental strain, was selected. A central composite design was applied to 400A15 to optimize carotenoids and biomass productions. Regression analyses of the quadratic polynomial equations obtained (R2 = 0.87 and 0.94, for carotenoids and biomass, respectively) suggest that the models are reliable and significant (P < 0.0001) in the prediction of carotenoids and biomass productions on the basis of the concentrations of crude glycerol, yeast extract and peptone. Accordingly, total carotenoids production achieved (14.07 ± 1.45 mg l−1) under optimized growth conditions was not statistically different from the maximal predicted (14.64 ± 1.57 mg l−1) (P < 0.05), and it was about 100 % higher than that obtained under un-optimized conditions. Therefore mutant 400A15 may represent a biocatalyst of choice for the bioconversion of crude glycerol into value-added metabolites, and a tool for the valorization of this by-product of the biodiesel industry.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  • An GH, Suh OS, Kim K, Johnson EA (2000) Quantification of carotenoids in cells of Phaffia rhodozyma by autofluorescence. Biotechnol Lett 22:1031–1034

    Article  CAS  Google Scholar 

  • BCC Research (2011) The global market for carotenoids. http://www.bccresearch.com/report/carotenoids-global-market-fod025d.html. Accessed Sept 2011

  • Bhosale P, Gadre RV (2001) Optimization of carotenoids production from hyper-producing Rhodotorula glutinis mutant 32 by a factorial approach. Lett Appl Microbiol 33:12–16

    Article  CAS  Google Scholar 

  • Buzzini P (2000) An optimization study of carotenoid production by Rhodotorula glutinis DBVPG3853 from substrates containing concentrated rectified grape must as the sole carbohydrate source. J Ind Microbiol Biotechnol 24:41–45

    Article  CAS  Google Scholar 

  • Buzzini P, Innocenti M, Turchetti B, Libkind D, van Broock M, Mulinacci N (2007) Carotenoid profiles of yeasts belonging to the genera Rhodotorula, Rhodosporidium, Sporobolomyces, and Sporidiobolus. Can J Microbiol 53:1024–1031

    Article  CAS  Google Scholar 

  • Buzzini P, Goretti M, Branda E, Turchetti B (2010) Basidiomycetous yeasts for production of carotenoids. In: Flickinger MC (ed) Encyclopedia of industrial biotechnology: bioprocess, bioseparation, and cell technology, vol 1. Wiley, New York, pp 469–481

    Google Scholar 

  • Chatzifragkou A, Makri A, Belka A, Bellou S, Mavrou M, Mastoridou M, Mystrioti P, Onjaro G, Aggelis G, Papanikolau S (2011) Biotechnological conversions of biodiesel derived waste glycerol by yeast and fungal species. Energy 36:1097–1108

    Article  CAS  Google Scholar 

  • Davey MW, Keulemans J, Swennen R (2006) Methods for the efficient quantification of fruit provitamin A contents. J Chromatogr A 1136:176–184

    Article  CAS  Google Scholar 

  • Davoli P, Weber RWS (2002) Carotenoid pigment from the red mirror yeast, Sporobolomycer roseus. Mycologist 16(3):102–108

    Article  Google Scholar 

  • Dominguez-Bocanegra AR, Torres Muñoz JA (2004) Astaxanthin hyperproduction by Phaffia rhodozyma (now Xanthophyllomyces dendrorhous) with crude coconut milk as sole source of energy. Appl Microbiol Biotechnol 66:249–252

    Article  CAS  Google Scholar 

  • Dufossé L (2006) Microbial production of food grade pigments. Food Technol Biotechnol 44(3):313–321

    Google Scholar 

  • Edge R, McGarvey DJ, Truscott TG (1997) The carotenoids as antioxidants: a review. J Photochem Photobiol, B 41:189–200

    Article  CAS  Google Scholar 

  • Emodi A (1978) Carotenoids. Properties and applications. Food Technol 32:38–40

    CAS  Google Scholar 

  • Frengova GI, Beshkova DM (2009) Carotenoids from Rhodotorula and Phaffia: yeasts of biotechnological importance. J Ind Microbiol Biotechnol 36(2):163–180

    Article  CAS  Google Scholar 

  • Frengova GI, Simova DE, Pavlova K, Beshkova DM, Grigorova D (1994) Formation of carotenoids by Rhodotorula glutinis in whey ultrafiltrate. Biotech Bioeng 44:888–894

    Article  CAS  Google Scholar 

  • Frengova G, Simova DE, Beshkova DM (2003) Carotenoid production by lactose negative yeasts co-cultivated with lactic acid bacteria in whey ultrafiltrate. Z Naturfosch 58c:562–567

    Google Scholar 

  • Gruszecki WI, Strzalka K (2005) Carotenoids as modulators of lipid membrane physical properties. Biochim Biophys Acta 1740:108–115

    Article  CAS  Google Scholar 

  • Hennekens CH (1997) β-carotene supplementation and cancer prevention. Nutrition 13:697–699

    Article  CAS  Google Scholar 

  • Johnson EA, Schroeder WA (1996) Microbial carotenoids. Adv Biochem Eng Biotechnol 53:119–178

    CAS  Google Scholar 

  • Kim BK, Park PK, Chae HJ, Kim EY (2004) Effect of phenol on β-carotene content in total carotenoids production in cultivation of Rhodotorula glutinis. Korean J Chem Eng 21(3):689–692

    Article  CAS  Google Scholar 

  • Kurtzman CP, Fell JW (1998) The yeasts: a taxonomic study, 4th edn. Elsevier, Amsterdam

    Google Scholar 

  • Latha BV, Jeevaratnam K, Murali HS, Manjia KS (2005) Influence of growth factors on carotenoids pigmentation of Rhodotorula glutinis DFR-PDY from natural carbon source. Int J Biotechnol 4:353–357

    CAS  Google Scholar 

  • Lee PC, Schmidt-Dannert C (2002) Metabolic engineering towards biotechnological production of carotenoids in microorganisms. Appl Microbiol Biotechnol 60:1–11

    Article  CAS  Google Scholar 

  • Maldonade IR, Rodriguez-Amaya DB, Scamparini ARP (2008) Carotenoids of yeasts isolated from the Brazilian ecosystem. Food Chem 107:145–150

    Article  CAS  Google Scholar 

  • Moliné M, Libkind D, del Carmen Diéguez M, van Broock M (2009) Photoprotective role of carotenoids in yeasts: response to UV-B of pigmented and naturally-occurring albino strains. J Photochem Photobiol B Biol 95:156–161

    Article  Google Scholar 

  • Molldrem KL, Li J, Simon PW, Tanumihardjo SA (2004) Lutein and β-carotene from lutein-containing yellow carrots are bioavailable in humans. Am J Clin Nutr 80(1):131–136

    CAS  Google Scholar 

  • Moran NA, Jarvik T (2010) Lateral transfer of genes from fungi underlies carotenoid production in aphids. Science 328(5978):574–575

    Article  Google Scholar 

  • Nicol RW, Marchand K, Lubitz WD (2012) Bioconversion of crude glycerol by fungi. Appl Microbiol Biotechnol 93:1865–1875

    Article  CAS  Google Scholar 

  • Saenge C, Cheirsilpb B, Suksaroge TT, Bourtoomc T (2011) Potential use of oleaginous red yeast Rhodotorula glutinis for the bioconversion of crude glycerol from biodiesel plant to lipids and carotenoids. Proc Biochem 46(1):210–218

    Article  CAS  Google Scholar 

  • Taccari M, Canonico L, Comitini F, Mannazzu I, Ciani M (2012) Screening of yeasts for growth on crude glycerol and optimization of biomass production. Biores Technol 110:488–495

    Article  CAS  Google Scholar 

  • Taungbodhitham AK, Jones GP, Walqvist ML, Briggs DR (1998) Evaluation of extraction method for the analysis of carotenoids in fruits and vegetables. Food Chem 63(4):577–584

    Article  CAS  Google Scholar 

  • Tinoi J, Rakariyatham N, Deming RL (2005) Simplex optimization of carotenoid production by Rhodotorula glutinis using hydrolyzed mung bean waste flour as substrate. Proc Biochem 40:2551–2557

    Article  CAS  Google Scholar 

  • Valduga E, Valério A, Treichel E, Furigo Júnior A, Di Luccio M (2009) Optimization of the production of total carotenoids by Sporidiobolus salmonicolor (CBS 2636) using response surface technique. Food Bioprocess Technol 2:415–421

    Article  CAS  Google Scholar 

  • van den Berg H, Faulks R, Granado HF, Hirshberg J, Olmedilla B, Sandman G, Southon S, Stahl W (2000) The potential for the improvement of carotenoid levels in foods and the likely systemic effects. J Sci Food Agric 80:880–912

    Article  Google Scholar 

  • Vershinin A (1999) Biological functions of carotenoids-diversity and evolution. BioFactors 10:99–104

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Ministero delle Politiche Agricole e Forestali (MIPAF) (D.M. 26285/7303/2009) project named “I lieviti nel recupero e valorizzazione del glicerolo grezzo derivante dalla produzione di biodiesel (LIEBIG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilaria Mannazzu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cutzu, R., Coi, A., Rosso, F. et al. From crude glycerol to carotenoids by using a Rhodotorula glutinis mutant. World J Microbiol Biotechnol 29, 1009–1017 (2013). https://doi.org/10.1007/s11274-013-1264-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-013-1264-x

Keywords

  • Rhodotorula glutinis
  • β–carotene
  • Crude glycerol
  • Central composite design
  • Bioconversion