Skip to main content

Advertisement

Log in

Production of 3-nitropropionic acid by endophytic fungus Phomopsis longicolla isolated from Trichilia elegans A. JUSS ssp. elegans and evaluation of biological activity

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

An Erratum to this article was published on 14 January 2014

Abstract

The compound 3-nitropropionic acid is a potent neurotoxic agent in animals and well-known as a potent inhibitor of Mycobacterium tuberculosis. In this research, we were able to extract this compound from the endophytic fungus, Phomopsis longicolla (FJ62759), isolated from Trichilia elegans A. JUSS ssp. elegans. The aim of this study was the isolation of secondary metabolites produced by P. longicolla, the chemical identification of these compounds and evaluation of their antimicrobial and insecticidal activity. To accomplish these goals, the fungus was cultured in BD broth for 25 days without agitation at 28 °C, and then the broth was separated from the mycelium. The supernatant was partitioned with dichloromethane (CH2Cl2), ethyl acetate (EtOAc), and butanol (BuOH) solvents resulting in 3 extracts. However, only the EtOAc extract was used for fractionation and chemical identification because it had the greatest mass. After common chromatographic procedures, the fractions were analyzed by nuclear magnetic resonance to elucidate the chemical components. This procedure resulted in the identification of 3-nitropropionic acid in the D fraction. Evaluation of the insecticidal and antimicrobial activity of this compound has been accomplished, and the results indicate good inhibition of the citrus pathogen Guignardia citricarpa and cocoa pathogen Moniliophthora perniciosa and slight inhibition of the human bacterial pathogens Micrococcus luteus, Salmonella typhi and slight inhibition of phytopathogenic bacteria Xanthomonas axonopodis pv. phaseoli. The evaluation of insecticide activity did not show mortality of the Diatraea saccharalis larvae by the metabolite 3-nitropropionic acid in the D fraction. The results suggest that P. longicolla is a bioactive metabolic producing endophytic fungus with biotechnological properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Abdou R, Scherlach K, Dahse HM, Sattler I, Hertweck C (2010) Botryorhodines A–D, antifungal and cytotoxic depsidones from Botryosphaeria rhodina, and endophyte of the medicinal plant Bidens pilosa. Phytochemistry 71:110–116. doi:10.1016/j.phytochem.2009.09.024

    Article  CAS  Google Scholar 

  • Alves SB, Padua LEM, Azevedo EMVM, Almeida LC (1985) Controle da broca da cana-de-açúcar pelo uso de Beauveria bassiana. Pesq Agropec Bras 20(4):403–406

    Google Scholar 

  • Alves SB, Rossi LS, Lopes RB, Tamai MA, Pereira RM (2002) Beauveria bassiana yeast phase on agar medium and its pathogenicity against Diatraea saccharalis (Lepidoptera: Crambidae) and Tetranychus urticae (Acari: Tetranychidae). J Invert Pathol 81(2):70–77. doi:10.1016/S0022-2011(02)00147-7

    Article  Google Scholar 

  • Azevedo JL (1998) Microorganismos Endofíticos. In: Melo ISE, Azevedo JL Ecologia Microbiana, Jaguariúna, Editora Embrapa, pp 117–137

  • Bernardi-Wenzel J, Garcia A, Rubin filho CJ, Prioli AJ, Pamphile JA (2010) Evaluation of foliar fungal endophyte diversity and colonization of medicinal plant Luehea divaricata (Martius et Zuccarini). Biol Res 43:375–384. doi:10.4067/S0716-97602010000400001

    Article  Google Scholar 

  • Bogorni PC, Vendramim JD (2005) Efeito subletal de extratos aquosos de Trichilia spp. sobre o desenvolvimento de Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) em milho. Neotrop Entomol 34(2):311–317. doi:10.1590/S1519-566X2005000200020

    Article  Google Scholar 

  • Bortoli SA, Dória HOS, Albergaria NMMS, Botti MV (2005) Aspectos biológicos e dano de Diatraea saccharalis (Fabr., 1794) (Lepidoptera:Pyralidae) em sorgo cultivado sob diferentes doses de nitrogênio e potássio. Ciênc Agrotec 29: (2) 267–273. doi: 10.1590/S1413-70542005000200001

    Google Scholar 

  • Cappelletty DM, Rybak MJ (1996) Comparison of methodologies for synergism testing of drug combinations against resistant strains of Pseudomonas aeruginosa. Antimicrob Agents Chemother 40(3):677–683

    CAS  Google Scholar 

  • Chomeheon P, Wiyakrutta S, Sriubolmas N, Ngamrojanavanich N, Isarangkul D, Kittakoop P (2005) 3-nitropropionic acid (3-NPA), a potent antimycobacterial agent from endophytic fungi: is 3-NPA in some plants produced by endophytes? J Nat Prod 68:103–1105. doi:10.1021/np050036a

    Google Scholar 

  • Cole RJ, Cox RH (1981) Handbook of toxic fungal metabolites. Academic Press, New York, pp 755

  • Corning PA (2000) “The Synergism Hypothesis”: on the concept of synergy and its role in the evolution of complex systems. J Soc Evol Sys 21(2):133–172. doi:10.1016/S1061-7361(00)80003-X

    Article  Google Scholar 

  • Culvenor CCJ, Edgar LA, Mackay M (1989) Structure elucidation and absolute configuration of phomopsin A, a hexapeptide mycotoxin produced by Phomopsis leptostromiformis, tetrahed, 45: (8) 2351–2372. doi: 10.1016/S0040-4020(01)83436-0

  • Evidente A, Capretti P, Giordano FE, Surico G (1992) Identification and phytotoxicity of 3-nitropropionic acid produced in vitro by Melanconis thelebola. Experiment 48:1169–1172

    CAS  Google Scholar 

  • Gunatilaka AAL (2006) Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity, and implications of their occurrence. J Nat Prod 69(3):509–526. doi:10.1021/np058128n

    Article  CAS  Google Scholar 

  • Hamilton BF, Gould DH and Gustine DL (1999) History of 3-Nitropropionic acid: occurrence and role in human and animal disease. In: Sanberg PR, Nishino H and Borlongan CV Mitochondrial inhibitors and Neurodegenerative disorders, New Jersey, Human Press

    Google Scholar 

  • Horn WS, Schwartz RE, Simmonds MSJ, Blaney WM (1994) Isolation and characterization of Phomodiol, a new antifungal from Phomopsis. Tetrahedron Lett 35(33):6037–6040. doi:10.1016/0040-4039(94)88068-9

    Article  CAS  Google Scholar 

  • Horn WS, Simmonds MSJ, Schwartz RE, Blaney WM (1995) Phomopsichalasin, a novel antimicrobial agent from an endophytic Phomopsis sp. Tetrahedron 51(14):3969–3978. doi:10.1016/0040-4020(95)00139-Y

    Article  CAS  Google Scholar 

  • Horn WS, Simmonds MSJ, Schwartz RE, Blaney WM (1996) Variation in production of phomodiol and phomopsolide B by Phomopsis spp. Mycology 88(4):588–595

    Article  CAS  Google Scholar 

  • Isaka M, Jaturapat A, Rukseree K, Danwisetkanjana K, Tanticharoen M, Thebtaranonth Y (2001) Phomoxanthones A and B, novel xanthone dimmers from the endophytic fungus Phomopsis species. J Nat Prod 64:1015–1018

    Article  CAS  Google Scholar 

  • Kenfield D, Bunkers G, Strobel GA, Sugawara F (1989) Fungal phytotoxins potential new herbicides. In: Graniti A, Durbin DR, Ballio A Phytotoxins and plant pathogenesis. Berlin, Springer, pp 319

    Google Scholar 

  • Krohn K, Michel A, Roemer E, Floerke U, Aust HJ, Draeger S, Schultz B, Wray V (1995) Biologically active metabolites from fungi Phomosines A–C. Three new biaryl ethers from Phomopsis sp. Nat Prod Lett 6:309–314

    Article  CAS  Google Scholar 

  • Martinez SS (2002) O nim—Azadirachta indica: natureza, usos múltiplos, produção. Instituto Agronômico do Paraná, Londrina, p 142

    Google Scholar 

  • Matos AP, Nebo L, Vieira PC, Fernandes JB, Silva MFG da (2009) Constituintes químicos e atividade inseticida dos extratos de frutos de Trichilia elegans e T. catigua (Meliaceae). Quím Nova 32: (6) 1553–1556. doi: 10.1590/S0100-40422009000600037

  • Nakatani M, Iwashita T, Naoki H, Hase T (1985) Structure of a limonoid antifeedant from Trichilia roka. Phytochemistry 24(1):195–196. doi:10.1016/S0031-9422(00)80842-0

    Article  CAS  Google Scholar 

  • Pamphile JA, da Rocha CLMSC, Azevedo JL (2004) Co-transformation of a tropical maize endophytic isolate of Fusarium verticillioides (synonym F. moniliforme) with gusA and niA genes. Genet Mol Biol 27(2):253–258. doi:10.1590/S1415-47572004000200021

    Article  CAS  Google Scholar 

  • Peixoto-Neto PAS, Azevedo JL, Araújo WL (2002) Microrganismos endofíticos. Biotec Ciênc e Desenv 29:62–76

    Google Scholar 

  • Phongpaichit S, Rungjindamai N, Rukachaisirikul V, Sakayaroj J (2006) Antimicrobial activity in cultures of endophytic fungi isolated from Garcinia species. FEMS Immunol Med Microbiol 48:367–372. doi:10.1111/j.1574-695X.2006.00155.x

    Article  CAS  Google Scholar 

  • Ramírez MC, Toscano RA, Arnason J, Omar S, Cerda-García-Rojas CM, Mata R (2000) Structure, conformation and absolute configuration of new antifeedant dolabellanes from Trichilia trifolia. Tetrahedron 56:5085–5091. doi:10.1016/S0040-4020(00)00423-3

    Article  Google Scholar 

  • Rhoden SA, Garcia A, Rubin-filho CJ, Azevedo JL, Pamphile JA (2012a) Phylogenetic diversity of endophytic leaf fungus isolates from the medicinal tree Trichilia elegans (Meliaceae). Genet Mol Res 11(3):2513–2522. doi:10.4238/2012.June.15.8

    Article  CAS  Google Scholar 

  • Rhoden SA, Garcia A, Bongiorno VA, Azevedo JL, Pamphile JA (2012b) Antimicrobial activity of crude extracts of endophytic fungi isolated from medicinal plant Trichilia elegans A Juss. J App Pharm Sci 02(08):57–59. doi:10.7324/JAPS.2012.2807

    Google Scholar 

  • Rukachaisirikul V, Sommart U, Phongpaichit S, Sakayaroj J, Kirtikara K (2008) Metabolites from the endophytic fungus Phomopsis sp. PSU-D15. Phytochemistry 68:783–787. doi:10.1016/j.phytochem.2007.09.006

    Article  Google Scholar 

  • Sambrook J, Russel LDW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • SAS (2001) SAS Institute Inc., Cary, NC, USA

  • Schulz B, Boyle C, Draeger S, Römmert A, Krohn K (2002) Endophytic Fungi: a source of novel biologically active secondary metabolites. Mycol Res 106:996–1004. doi:10.1017/S0953756202006342

    Article  CAS  Google Scholar 

  • Schwarz M, Köpcke B, Weber RWS, Sterner O, Anke H (2004) 3-Hydroxypropionic acid as a nematicidal principle in endophytic fungi. Phytochemistry 65:2239–2245. doi:10.1016/j.phytochem.2004.06.035

    Article  CAS  Google Scholar 

  • Silva GH, Teles HL, Trevisan HC, Bolzani VS, Young MCM, Pfenning LH, Eberlin MN, Haddad R, Costa-Neto CM, Araújo AR (2005) New bioactive metabolites produced by Phomopsis cassiae, an endophytic fungus in Cassia spectabilis. J Braz Chem Soc 16(6):1463–1466. doi:10.1590/S0103-50532005000800029

    Article  CAS  Google Scholar 

  • Souza AQL, Souza AFD, Astolfi-Filho S, Belém-Pinheiro ML, Sarquis MIM, Pereira JO (2004) Atividade Antimicrobiana de fungos endofíticos isolados de plantas tóxicas da Amazônia: Palicourea longiflora (aubl.) rich e Strychnos cogens bentham. Acta Amaz 34(2):185–195

    Article  Google Scholar 

  • Strobel G, Daisy B, Castillo U, Harper J (2004) Natural products from endophytic microorganisms. J Nat Prod 67(2):257–268. doi:10.1021/np030397v

    Article  CAS  Google Scholar 

  • Tsantrizos YS, Ogilvie KK, Watson AK (1992) Phytotoxic metabolites of Phomopsis convolvulus, a host-especific pathogen of field bindweed. Can J Chem 70(8):2276–2284. doi:10.1139/v92-286

    Article  CAS  Google Scholar 

  • Gomes-Figueiredo J, Pimentel IC, Vicente, VA, Pie MR, Kava-Cordeiro V, Galli-Terasawa L, Pereira JO, Souza AQL, Glienke C (2007) Bioprospecting highly diverse endophytic Pestalotiopsis spp. with antibacterial properties from Maytenus ilicifolia, a medicinal plant from Brazil. Can J Microbiol 53(10):1123–1132

    Google Scholar 

  • Viegas-junior C (2003) Terpenos com atividade inseticida: uma alternativa para o controle químico de insetos. Quím nova 26(3):390–400. doi:10.1590/S0100-40422003000300017

    Article  CAS  Google Scholar 

  • Wagenaar MM, Clardy J (2001) Dicerandrols, new antibiotic and cytotoxic dimer produced by the fungus Phomopsis longicolla isolated from an endangered mint. J Nat Prod 64:1006–1009. doi:10.1021/np010020u

    Article  CAS  Google Scholar 

  • Zhang HW, Song YC, Tan RX (2006) Biology and chemistry of endophytes. Nat Prod Rep 23:753–771. doi:10.1039/B609472B

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), for granting the scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Alencar Pamphile.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flores, A.C., Pamphile, J.A., Sarragiotto, M.H. et al. Production of 3-nitropropionic acid by endophytic fungus Phomopsis longicolla isolated from Trichilia elegans A. JUSS ssp. elegans and evaluation of biological activity. World J Microbiol Biotechnol 29, 923–932 (2013). https://doi.org/10.1007/s11274-013-1251-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-013-1251-2

Keywords