Production of 3-nitropropionic acid by endophytic fungus Phomopsis longicolla isolated from Trichilia elegans A. JUSS ssp. elegans and evaluation of biological activity

  • Andressa Caroline Flores
  • João Alencar Pamphile
  • Maria Helena Sarragiotto
  • Edmar Clemente
Original Paper

Abstract

The compound 3-nitropropionic acid is a potent neurotoxic agent in animals and well-known as a potent inhibitor of Mycobacterium tuberculosis. In this research, we were able to extract this compound from the endophytic fungus, Phomopsis longicolla (FJ62759), isolated from Trichilia elegans A. JUSS ssp. elegans. The aim of this study was the isolation of secondary metabolites produced by P. longicolla, the chemical identification of these compounds and evaluation of their antimicrobial and insecticidal activity. To accomplish these goals, the fungus was cultured in BD broth for 25 days without agitation at 28 °C, and then the broth was separated from the mycelium. The supernatant was partitioned with dichloromethane (CH2Cl2), ethyl acetate (EtOAc), and butanol (BuOH) solvents resulting in 3 extracts. However, only the EtOAc extract was used for fractionation and chemical identification because it had the greatest mass. After common chromatographic procedures, the fractions were analyzed by nuclear magnetic resonance to elucidate the chemical components. This procedure resulted in the identification of 3-nitropropionic acid in the D fraction. Evaluation of the insecticidal and antimicrobial activity of this compound has been accomplished, and the results indicate good inhibition of the citrus pathogen Guignardia citricarpa and cocoa pathogen Moniliophthora perniciosa and slight inhibition of the human bacterial pathogens Micrococcus luteus,Salmonella typhi and slight inhibition of phytopathogenic bacteria Xanthomonas axonopodis pv. phaseoli. The evaluation of insecticide activity did not show mortality of the Diatraea saccharalis larvae by the metabolite 3-nitropropionic acid in the D fraction. The results suggest that P. longicolla is a bioactive metabolic producing endophytic fungus with biotechnological properties.

Keywords

Chemical characterization Bioactive compounds Secondary metabolites P. longicolla endophyte Moniliophthora perniciosa Guignardia citricarpa 

References

  1. Abdou R, Scherlach K, Dahse HM, Sattler I, Hertweck C (2010) Botryorhodines A–D, antifungal and cytotoxic depsidones from Botryosphaeria rhodina, and endophyte of the medicinal plant Bidens pilosa. Phytochemistry 71:110–116. doi:10.1016/j.phytochem.2009.09.024 CrossRefGoogle Scholar
  2. Alves SB, Padua LEM, Azevedo EMVM, Almeida LC (1985) Controle da broca da cana-de-açúcar pelo uso de Beauveria bassiana. Pesq Agropec Bras 20(4):403–406Google Scholar
  3. Alves SB, Rossi LS, Lopes RB, Tamai MA, Pereira RM (2002) Beauveria bassiana yeast phase on agar medium and its pathogenicity against Diatraea saccharalis (Lepidoptera: Crambidae) and Tetranychus urticae (Acari: Tetranychidae). J Invert Pathol 81(2):70–77. doi:10.1016/S0022-2011(02)00147-7 CrossRefGoogle Scholar
  4. Azevedo JL (1998) Microorganismos Endofíticos. In: Melo ISE, Azevedo JL Ecologia Microbiana, Jaguariúna, Editora Embrapa, pp 117–137Google Scholar
  5. Bernardi-Wenzel J, Garcia A, Rubin filho CJ, Prioli AJ, Pamphile JA (2010) Evaluation of foliar fungal endophyte diversity and colonization of medicinal plant Luehea divaricata (Martius et Zuccarini). Biol Res 43:375–384. doi:10.4067/S0716-97602010000400001 CrossRefGoogle Scholar
  6. Bogorni PC, Vendramim JD (2005) Efeito subletal de extratos aquosos de Trichilia spp. sobre o desenvolvimento de Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) em milho. Neotrop Entomol 34(2):311–317. doi:10.1590/S1519-566X2005000200020 CrossRefGoogle Scholar
  7. Bortoli SA, Dória HOS, Albergaria NMMS, Botti MV (2005) Aspectos biológicos e dano de Diatraea saccharalis (Fabr., 1794) (Lepidoptera:Pyralidae) em sorgo cultivado sob diferentes doses de nitrogênio e potássio. Ciênc Agrotec 29: (2) 267–273. doi: 10.1590/S1413-70542005000200001 Google Scholar
  8. Cappelletty DM, Rybak MJ (1996) Comparison of methodologies for synergism testing of drug combinations against resistant strains of Pseudomonas aeruginosa. Antimicrob Agents Chemother 40(3):677–683Google Scholar
  9. Chomeheon P, Wiyakrutta S, Sriubolmas N, Ngamrojanavanich N, Isarangkul D, Kittakoop P (2005) 3-nitropropionic acid (3-NPA), a potent antimycobacterial agent from endophytic fungi: is 3-NPA in some plants produced by endophytes? J Nat Prod 68:103–1105. doi:10.1021/np050036a Google Scholar
  10. Cole RJ, Cox RH (1981) Handbook of toxic fungal metabolites. Academic Press, New York, pp 755Google Scholar
  11. Corning PA (2000) “The Synergism Hypothesis”: on the concept of synergy and its role in the evolution of complex systems. J Soc Evol Sys 21(2):133–172. doi:10.1016/S1061-7361(00)80003-X CrossRefGoogle Scholar
  12. Culvenor CCJ, Edgar LA, Mackay M (1989) Structure elucidation and absolute configuration of phomopsin A, a hexapeptide mycotoxin produced by Phomopsis leptostromiformis, tetrahed, 45: (8) 2351–2372. doi: 10.1016/S0040-4020(01)83436-0
  13. Evidente A, Capretti P, Giordano FE, Surico G (1992) Identification and phytotoxicity of 3-nitropropionic acid produced in vitro by Melanconis thelebola. Experiment 48:1169–1172Google Scholar
  14. Gunatilaka AAL (2006) Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity, and implications of their occurrence. J Nat Prod 69(3):509–526. doi:10.1021/np058128n CrossRefGoogle Scholar
  15. Hamilton BF, Gould DH and Gustine DL (1999) History of 3-Nitropropionic acid: occurrence and role in human and animal disease. In: Sanberg PR, Nishino H and Borlongan CV Mitochondrial inhibitors and Neurodegenerative disorders, New Jersey, Human PressGoogle Scholar
  16. Horn WS, Schwartz RE, Simmonds MSJ, Blaney WM (1994) Isolation and characterization of Phomodiol, a new antifungal from Phomopsis. Tetrahedron Lett 35(33):6037–6040. doi:10.1016/0040-4039(94)88068-9 CrossRefGoogle Scholar
  17. Horn WS, Simmonds MSJ, Schwartz RE, Blaney WM (1995) Phomopsichalasin, a novel antimicrobial agent from an endophytic Phomopsis sp. Tetrahedron 51(14):3969–3978. doi:10.1016/0040-4020(95)00139-Y CrossRefGoogle Scholar
  18. Horn WS, Simmonds MSJ, Schwartz RE, Blaney WM (1996) Variation in production of phomodiol and phomopsolide B by Phomopsis spp. Mycology 88(4):588–595CrossRefGoogle Scholar
  19. Isaka M, Jaturapat A, Rukseree K, Danwisetkanjana K, Tanticharoen M, Thebtaranonth Y (2001) Phomoxanthones A and B, novel xanthone dimmers from the endophytic fungus Phomopsis species. J Nat Prod 64:1015–1018CrossRefGoogle Scholar
  20. Kenfield D, Bunkers G, Strobel GA, Sugawara F (1989) Fungal phytotoxins potential new herbicides. In: Graniti A, Durbin DR, Ballio A Phytotoxins and plant pathogenesis. Berlin, Springer, pp 319Google Scholar
  21. Krohn K, Michel A, Roemer E, Floerke U, Aust HJ, Draeger S, Schultz B, Wray V (1995) Biologically active metabolites from fungi Phomosines A–C. Three new biaryl ethers from Phomopsis sp. Nat Prod Lett 6:309–314CrossRefGoogle Scholar
  22. Martinez SS (2002) O nim—Azadirachta indica: natureza, usos múltiplos, produção. Instituto Agronômico do Paraná, Londrina, p 142Google Scholar
  23. Matos AP, Nebo L, Vieira PC, Fernandes JB, Silva MFG da (2009) Constituintes químicos e atividade inseticida dos extratos de frutos de Trichilia elegans e T. catigua (Meliaceae). Quím Nova 32: (6) 1553–1556. doi: 10.1590/S0100-40422009000600037
  24. Nakatani M, Iwashita T, Naoki H, Hase T (1985) Structure of a limonoid antifeedant from Trichilia roka. Phytochemistry 24(1):195–196. doi:10.1016/S0031-9422(00)80842-0 CrossRefGoogle Scholar
  25. Pamphile JA, da Rocha CLMSC, Azevedo JL (2004) Co-transformation of a tropical maize endophytic isolate of Fusarium verticillioides (synonym F. moniliforme) with gusA and niA genes. Genet Mol Biol 27(2):253–258. doi:10.1590/S1415-47572004000200021 CrossRefGoogle Scholar
  26. Peixoto-Neto PAS, Azevedo JL, Araújo WL (2002) Microrganismos endofíticos. Biotec Ciênc e Desenv 29:62–76Google Scholar
  27. Phongpaichit S, Rungjindamai N, Rukachaisirikul V, Sakayaroj J (2006) Antimicrobial activity in cultures of endophytic fungi isolated from Garcinia species. FEMS Immunol Med Microbiol 48:367–372. doi:10.1111/j.1574-695X.2006.00155.x CrossRefGoogle Scholar
  28. Ramírez MC, Toscano RA, Arnason J, Omar S, Cerda-García-Rojas CM, Mata R (2000) Structure, conformation and absolute configuration of new antifeedant dolabellanes from Trichilia trifolia. Tetrahedron 56:5085–5091. doi:10.1016/S0040-4020(00)00423-3 CrossRefGoogle Scholar
  29. Rhoden SA, Garcia A, Rubin-filho CJ, Azevedo JL, Pamphile JA (2012a) Phylogenetic diversity of endophytic leaf fungus isolates from the medicinal tree Trichilia elegans (Meliaceae). Genet Mol Res 11(3):2513–2522. doi:10.4238/2012.June.15.8 CrossRefGoogle Scholar
  30. Rhoden SA, Garcia A, Bongiorno VA, Azevedo JL, Pamphile JA (2012b) Antimicrobial activity of crude extracts of endophytic fungi isolated from medicinal plant Trichilia elegans A Juss. J App Pharm Sci 02(08):57–59. doi:10.7324/JAPS.2012.2807 Google Scholar
  31. Rukachaisirikul V, Sommart U, Phongpaichit S, Sakayaroj J, Kirtikara K (2008) Metabolites from the endophytic fungus Phomopsis sp. PSU-D15. Phytochemistry 68:783–787. doi:10.1016/j.phytochem.2007.09.006 CrossRefGoogle Scholar
  32. Sambrook J, Russel LDW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  33. SAS (2001) SAS Institute Inc., Cary, NC, USAGoogle Scholar
  34. Schulz B, Boyle C, Draeger S, Römmert A, Krohn K (2002) Endophytic Fungi: a source of novel biologically active secondary metabolites. Mycol Res 106:996–1004. doi:10.1017/S0953756202006342 CrossRefGoogle Scholar
  35. Schwarz M, Köpcke B, Weber RWS, Sterner O, Anke H (2004) 3-Hydroxypropionic acid as a nematicidal principle in endophytic fungi. Phytochemistry 65:2239–2245. doi:10.1016/j.phytochem.2004.06.035 CrossRefGoogle Scholar
  36. Silva GH, Teles HL, Trevisan HC, Bolzani VS, Young MCM, Pfenning LH, Eberlin MN, Haddad R, Costa-Neto CM, Araújo AR (2005) New bioactive metabolites produced by Phomopsis cassiae, an endophytic fungus in Cassia spectabilis. J Braz Chem Soc 16(6):1463–1466. doi:10.1590/S0103-50532005000800029 CrossRefGoogle Scholar
  37. Souza AQL, Souza AFD, Astolfi-Filho S, Belém-Pinheiro ML, Sarquis MIM, Pereira JO (2004) Atividade Antimicrobiana de fungos endofíticos isolados de plantas tóxicas da Amazônia: Palicourea longiflora (aubl.) rich e Strychnos cogens bentham. Acta Amaz 34(2):185–195CrossRefGoogle Scholar
  38. Strobel G, Daisy B, Castillo U, Harper J (2004) Natural products from endophytic microorganisms. J Nat Prod 67(2):257–268. doi:10.1021/np030397v CrossRefGoogle Scholar
  39. Tsantrizos YS, Ogilvie KK, Watson AK (1992) Phytotoxic metabolites of Phomopsis convolvulus, a host-especific pathogen of field bindweed. Can J Chem 70(8):2276–2284. doi:10.1139/v92-286 CrossRefGoogle Scholar
  40. Gomes-Figueiredo J, Pimentel IC, Vicente, VA, Pie MR, Kava-Cordeiro V, Galli-Terasawa L, Pereira JO, Souza AQL, Glienke C (2007) Bioprospecting highly diverse endophytic Pestalotiopsis spp. with antibacterial properties from Maytenus ilicifolia, a medicinal plant from Brazil. Can J Microbiol 53(10):1123–1132Google Scholar
  41. Viegas-junior C (2003) Terpenos com atividade inseticida: uma alternativa para o controle químico de insetos. Quím nova 26(3):390–400. doi:10.1590/S0100-40422003000300017 CrossRefGoogle Scholar
  42. Wagenaar MM, Clardy J (2001) Dicerandrols, new antibiotic and cytotoxic dimer produced by the fungus Phomopsis longicolla isolated from an endangered mint. J Nat Prod 64:1006–1009. doi:10.1021/np010020u CrossRefGoogle Scholar
  43. Zhang HW, Song YC, Tan RX (2006) Biology and chemistry of endophytes. Nat Prod Rep 23:753–771. doi:10.1039/B609472B CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Andressa Caroline Flores
    • 1
  • João Alencar Pamphile
    • 1
  • Maria Helena Sarragiotto
    • 2
  • Edmar Clemente
    • 3
  1. 1.Laboratory of Microbial Biotechnology, Department of Biotechnology, Genetics and Cell Biology (DBC)State University of Maringá (UEM)MaringáBrazil
  2. 2.Laboratory of Chemical Synthesis and Natural Products, Department of ChemistryState University of Maringá (UEM)MaringáBrazil
  3. 3.Laboratory of Food Biochemistry, Department of ChemistryState University of Maringá (UEM)MaringáBrazil

Personalised recommendations