Contamination issues in a continuous ethanol production corn wet milling facility

  • Esha Khullar
  • Angela D. Kent
  • Timothy D. Leathers
  • Kenneth M. Bischoff
  • Kent D. Rausch
  • M. E. Tumbleson
  • Vijay Singh
Original Paper

Abstract

Low ethanol yields and poor yeast viability were investigated at a continuous ethanol production corn wet milling facility. Using starch slurries and recycle streams from a commercial ethanol facility, laboratory hydrolysates were prepared by reproducing starch liquefaction and saccharification steps in the laboratory. Fermentations with hydrolysates prepared in the laboratory were compared with plant hydrolysates for final ethanol concentrations and total yeast counts. Fermentation controls were prepared using hydrolysates (plant and laboratory) that were not inoculated with yeast. Hydrolysates prepared in the laboratory resulted in higher final ethanol concentrations (15.8 % v/v) than plant hydrolysate (13.4 % v/v). Uninoculated controls resulted in ethanol production from both laboratory (12.2 % v/v) and plant hydrolysates (13.7 % v/v), indicating the presence of a contaminating microorganism. Yeast colony counts on cycloheximide and virginiamycin plates confirmed the presence of a contaminant. DNA sequencing and fingerprinting studies also indicated a number of dissimilar communities in samples obtained from fermentors, coolers, saccharification tanks, and thin stillage.

Keywords

Contamination Wet milling Ethanol 

References

  1. Abbott DA, Ingledew WM (2005) The importance of aeration strategy in fuel alcohol fermentations contaminated with Dekkera/Brettanomyces yeasts. Appl Microbiol Biotechnol 69:16–21CrossRefGoogle Scholar
  2. Basilio ACM, Araujo PRL, de Morais JOF, da Silva Filho EA, de Morais Jr MA, Simoes DA (2008) Detection and identification of wild yeast contaminants of the industrial fuel ethanol fermentation process. Curr Microbiol 56:322–326CrossRefGoogle Scholar
  3. Bischoff KM, Siqing L, Leathers TD, Worthington RE, Rich JO (2008) Modeling bacterial contamination of fuel ethanol fermentation. Biotech Bioeng 103:117–122CrossRefGoogle Scholar
  4. Chang IS, Kim BH, Shin PK, Lee WK (1995) Bacterial contamination and its effects on ethanol fermentation. Microbiol Biotechnol 12:309–314Google Scholar
  5. Clarke K, Green R (1988) Statistical design and analysis for a ‘biological effects’ study. Mar Ecol Prog Ser 46:213–226CrossRefGoogle Scholar
  6. de Souza-Liberal AT, da Silva Fihlo EA, de Morais JOF, Simoes DA, de Morais Jr MA (2005) Contaminant yeast detection in industrial ethanol fermentation must by rDNA-PCR. Lett Appl Microbiol 40:19–23CrossRefGoogle Scholar
  7. de Souza-Liberal AT, Basilio ACM, do Monte Resende A, Brasileiro BTV, da Silva Fihlo EA, de Morais JOF, Simoes DA, de Morais MA Jr (2007) Identification of Dekkera bruxellensis as a major contaminant yeast in continuous fuel ethanol fermentation. Appl Microbiol 102:538–547Google Scholar
  8. Drummond A, Ashton B, Cheung M, Heled J, Kearse M, Stones-Havas S, Thierer T, Wilson A (2009) Geneious v4.7. Available from http://www.geneious.com
  9. Ingledew WM (2003) Continuous fermentation in the fuel alcohol industry: how does the technology affect yeast. In: Jacques KA, Lyons TP, Kelsall DR (eds) The alcohol textbook: a reference for the beverage, fuel and industrial alcohol industries. Nottingham University Press, Nottingham, pp 135–144Google Scholar
  10. Johnson LA, May JB (2003) Wet milling: the basis for corn biorefineries. In: White PJ, Johnson LA (eds) Corn: chemistry and technology. American Association of Cereal Chemists, St. Paul, MN, pp 44–94Google Scholar
  11. Kent AD, Jones SE, Yannarell AC, Lauster GH, Graham JH, Kratz TK, Triplett EW (2004) Annual patterns in bacterioplankton community variability in a humic lake. Microb Ecol 48:550–560CrossRefGoogle Scholar
  12. Legendre P, Legendre L (1998) Numerical ecology. Elsevier Science, BV, AmsterdamGoogle Scholar
  13. Madson PW, Muttagh JE (1991) Fuel ethanol in USA: review of reason for 75% failure rate of plants built. IX International Symposium on Alcohol Fuels, Firenze, ISAF, pp 119–124Google Scholar
  14. Muthaiyan A, Limayem A, Ricke SC (2011) Antimicrobial strategies for limiting bacterial contaminants in fuel bioethanol fermentations. Prog Energy Combust Sci 37:351–370CrossRefGoogle Scholar
  15. Narendranath NV (2003) Bacterial contamination and control in ethanol production. In: Jacques KA, Lyons TP, Kelsall DR (eds) The alcohol textbook: a reference for the beverage, fuel and industrial alcohol industries. Nottingham University Press, Nottingham, pp 287–298Google Scholar
  16. Pejin D, Mojovic L, Grujic O, Pejin J, Rankin M (2009) The bioethanol production with thin stillage recirculation. Chem Ind Chem Eng Q 15:49–52CrossRefGoogle Scholar
  17. Rees GN, Baldwin DS, Watson GO, Perryman S, Nielsen DL (2004) Ordination and significance testing of microbial community composition derived from terminal restriction fragment length polymorphisms: application of multivariate statistics. Antonie Van Leeuwenhoek 86:339–347CrossRefGoogle Scholar
  18. RFA (2012) Annual industry outlook, renewable fuels association. Available online at: http://ethanolrfa.3cdn.net/d4ad995ffb7ae8fbfe_1vm62ypzd.pdf. Accessed 27 Feb 2012
  19. Sequerra J, Marmeisse R, Valla G, Normand P, Capellano A, Moiroud A (1997) Taxonomic position and intraspecific variability of the nodule forming Penicillium nodositatum inferred from RFLP analysis of the ribosomal intergenic spacer and random amplified polymorphic DNA. Mycol Res 101:465–472CrossRefGoogle Scholar
  20. Skinner KA, Leathers TD (2004) Bacterial contaminants of fuel ethanol production. Ind Microbiol Biotechnol 31:401–408CrossRefGoogle Scholar
  21. Yannarell AC, Triplett EW (2004) Within- and between-lake variability in the composition of bacterioplankton communities: investigations at multiple spatial scales. Appl Environ Microbiol 70:214–223CrossRefGoogle Scholar
  22. Yannarell AC, Triplett EW (2005) Geographic and environmental sources of variation in lake bacterial community composition. Appl Environ Microbiol 71:227–239CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Esha Khullar
    • 1
  • Angela D. Kent
    • 2
  • Timothy D. Leathers
    • 3
  • Kenneth M. Bischoff
    • 3
  • Kent D. Rausch
    • 1
  • M. E. Tumbleson
    • 1
  • Vijay Singh
    • 1
  1. 1.Agricultural and Biological EngineeringUniversity of IllinoisUrbanaUSA
  2. 2.Department of Natural Resources and Environmental SciencesUniversity of IllinoisUrbanaUSA
  3. 3.National Center for Agricultural Utilization Research, ARS, USDAPeoriaUSA

Personalised recommendations