Skip to main content
Log in

Optimization of the production of Aspergillus niger α-glucosidase expressed in Pichia pastoris

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The α-glucosidase (AGL) from Aspergillus niger has been applied to produce isomaltooligosaccharides. In the present study, various factors which affect the yield of recombinant AGL, produced by engineered Pichia pastoris, were investigated. The expression level reached 5.5 U ml−1 in bioreactor after optimization of parameters of initial induction cell density, induction temperature and methanol concentration. In addition, it was found that coexpression of protein disulfide isomerase (PDI) inhibited the growth of the engineered P. pastoris strains and had an adverse effect on the production of AGL, while codon optimization of native A. niger α-glucosidase encoding gene (aglu) resulted in a significant enhancement of enzyme production, which reached 10.1 U ml−1. We believe that yield of AGL is increased by codon optimization as a result of enhanced translation efficiency as well as more stable mRNA secondary structure. In contrast, PDI coexpression under the control of alcohol oxidase promoter (PAOX1) seems to be less efficient in helping disulfide bond formation in AGL while probably induce unfolded protein response, which further leads to cell apoptosis and increased protein degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bravo R, Gutierrez T, Paredes F, Gatica D, Rodriguez AE, Pedrozo Z, Chiong M, Parra V, Quest AFG, Rothermel BA, Lavandero S (2012) Endoplasmic reticulum: ER stress regulates mitochondrial bioenergetics. Int J Biochem Cell B 44(1):16–20. doi:10.1016/j.biocel.2011.10.012

    Article  CAS  Google Scholar 

  • Chapman R, Sidrauski C, Walter P (1998) Intracellular signaling from the endoplasmic reticulum to the nucleus. Annu Rev Cell Dev Biol 14(1):459–485

    Article  CAS  Google Scholar 

  • Chen DL, Tong X, Chen SW, Chen S, Wu D, Fang SG, Wu J, Chen J (2010) Heterologous expression and biochemical characterization of α-glucosidase from Aspergillus niger by Pichia pastroris. J Agric Food Chem 58(8):4819–4824

    Article  CAS  Google Scholar 

  • Clare JJ, Romanes MA, Rayment FB, Rowedder JE, Smith MA, Payne MM, Sreekrishna K, Henwood CA (1991) Production of mouse epidermal growth factor in yeast: high-level secretion using Pichia pastoris strains containing multiple gene copies. Gene 105(2):205–212

    Article  CAS  Google Scholar 

  • Damasceno LM, Anderson KA, Ritter G, Cregg JM, Old LJ, Batt CA (2007) Cooverexpression of chaperones for enhanced secretion of a single-chain antibody fragment in Pichia pastoris. Appl Microbiol Biotechnol 74(2):381–389. doi:10.1007/s00253-006-0652-7

    Article  CAS  Google Scholar 

  • Duan KJ, Sheu DC, Lin MT, Hsueh HC (1994) Reaction mechanism of isomaltooligosaccharides synthesis by α-glucosidase from Aspergillus carbonarious. Biotechnol Lett 16(11):1151–1156

    Article  CAS  Google Scholar 

  • Gao Z, Li Z, Zhang Y, Huang H, Li M, Zhou L, Tang Y, Yao B, Zhang W (2012) High-level expression of the Penicillium notatum glucose oxidase gene in Pichia pastoris using codon optimization. Biotechnol Lett 34(3):507–514

  • Gilbert HF (1998) Protein disulfide isomerase. Methods Enzymol 290:26–50

    Article  CAS  Google Scholar 

  • Hohenblum H, Gasser B, Maurer M, Borth N, Mattanovich D (2004) Effects of gene dosage, promoters, and substrates on unfolded protein stress of recombinant Pichia pastoris. Biotechnol Bioeng 85(4):367–375

    Article  CAS  Google Scholar 

  • Hu S, Li L, Qiao J, Guo Y, Cheng L, Liu J (2006) Codon optimization, expression, and characterization of an internalizing anti-ErbB2 single-chain antibody in Pichia pastoris. Protein Expr Purif 47(1):249–257. doi:10.1016/j.pep.2005.11.014

    Article  CAS  Google Scholar 

  • Huo X, Liu Y, Wang X, Ouyang P, Niu Z, Shi Y, Qiu B (2007) Co-expression of human protein disulfide isomerase (hPDI) enhances secretion of bovine follicle-stimulating hormone (bFSH) in Pichia pastoris. Protein Expr Purif 54(2):234–239

    Article  CAS  Google Scholar 

  • Jahic M, Gustavsson M, Jansen AK, Martinelle M, Enfors SO (2003) Analysis and control of proteolysis of a fusion protein in Pichia pastoris fed-batch processes. J Biotechnol 102(1):45–53

    Article  CAS  Google Scholar 

  • Jia H, Fan G, Yan Q, Liu Y, Yan Y, Jiang Z (2012) High-level expression of a hyperthermostable Thermotoga maritima xylanase in Pichia pastoris by codon optimization. J Mol Catal B Enzym 78:72–77

    Article  CAS  Google Scholar 

  • Kimura A (1998) Structure and catalytic mechanism of crystalline α-glucosidase from Aspergillus niger. J Appl Glycosci 45(1):71–79

    CAS  Google Scholar 

  • Kimura A, Takata M, Sakai O, Matsui H, Takai N, Takayanagi T, Nishimura I, Uozumi T, Chiba S (1992) Complete amino acid sequence of crystalline alpha-glucosidase from Aspergillus niger. Biosci Biotechnol Biochem 56(8):1368–1370

    Article  CAS  Google Scholar 

  • Koganesawa N, Aizawa T, Masaki K, Matsuura A, Nimori T, Bando H, Kawano K, Nitta K (2001) Construction of an expression system of insect lysozyme lacking thermal stability: the effect of selection of signal sequence on level of expression in the Pichia pastoris expression system. Protein Eng 14(9):705–710

    Article  CAS  Google Scholar 

  • Li ZX, Hong GQ, Wu ZH, Hu B, Xu J, Li L (2008) Optimization of the expression of hepatitis B virus e gene in Pichia pastoris and immunological characterization of the product. J Biotechnol 138(1–2):1–8. doi:10.1016/j.jbiotec.2008.07.1989

    Article  CAS  Google Scholar 

  • Mattanovich D, Gasser B, Hohenblum H, Sauer M (2004) Stress in recombinant protein producing yeasts. J Biotechnol 113(1–3):121–135. doi:10.1016/j.jbiotec.2004.04.035

    Article  CAS  Google Scholar 

  • McCleary BV, Gibson TS, Sheehan H, Casey A, Horgan L, O’Flaherty J (1989) Purification, properties, and industrial significance of transglucosidase from Aspergillus niger. Carbohydr Res 185(1):147–162

    Article  CAS  Google Scholar 

  • Nakamura A, Nishimura I, Yokoyama A, Lee DG, Hidaka M, Masaki H, Kimura A, Chiba S, Uozumi T (1997) Cloning and sequencing of an alpha-glucosidase gene from Aspergillus niger and its expression in A. nidulans. J Biotechnol 53(1):75–84

    Article  CAS  Google Scholar 

  • Ogawa M, Nishio T, Minoura K, Uozumi T, Wada M, Hashimoto N, Kawachi R, Oku T (2006) Recombinant alpha-glucosidase from Aspergillus niger. Overexpression by Emericella nidulans, purification and Characterization. J Appl Glycosci 53(1):13

    Article  CAS  Google Scholar 

  • Roche ED, Sauer RT (1999) SsrA-mediated peptide tagging caused by rare codons and tRNA scarcity. EMBO J 18(16):4579–4589

    Article  CAS  Google Scholar 

  • Romanos MA, Scorer CA, Clare JJ (1992) Foreign gene expression in yeast: a review. Yeast 8(6):423–488. doi:10.1002/yea.320080602

    Article  CAS  Google Scholar 

  • Schröder M, Kaufman RJ (2005) ER stress and the unfolded protein response. Mutat Res 569(1):29–63

    Article  Google Scholar 

  • Teng D, Fan Y, Yang YL, Tian ZG, Luo J, Wang JH (2007) Codon optimization of Bacillus licheniformis beta-1,3-1,4-glucanase gene and its expression in Pichia pastoris. Appl Microbiol Biotechnol 74(5):1074–1083. doi:10.1007/s00253-006-0765-z

    Article  CAS  Google Scholar 

  • Travers KJ, Patil CK, Wodicka L, Lockhart DJ, Weissman JS, Walter P (2000) Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. CELL-CAMBRIDGE MA- 101(3):249–258

    CAS  Google Scholar 

  • Tsai CW, Duggan PF, Shimp RL, Miller LH, Narum DL (2006) Overproduction of Pichia pastoris or Plasmodium falciparum protein disulfide isomerase affects expression, folding and O-linked glycosylation of a malaria vaccine candidate expressed in P. pastoris. J Biotechnol 121(4):458–470. doi:10.1016/j.jbiotec.2005.08.025

    Article  CAS  Google Scholar 

  • Xia X (1998) How optimized is the translational machinery in Escherichia coli, Salmonella typhimurium and Saccharomyces cerevisiae? Genetics 149(1):37–44

    CAS  Google Scholar 

  • Xu P, Raden D, Doyle FJ III, Robinson AS (2005) Analysis of unfolded protein response during single-chain antibody expression in Saccaromyces cerevisiae reveals different roles for BiP and PDI in folding. Metab Eng 7(4):269–279

    Article  CAS  Google Scholar 

  • Zhang J, Wu D, Chen J, Wu J (2011) Enhancing functional expression of β-glucosidase in Pichia pastoris by co-expressing protein disulfide isomerase. Biotechnol Bioprocess Eng 16(6):1196–1200

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Fundamental Research Funds for the Central Universities (JUSRP211A05), the National Natural Science Foundation of China (30970057 and 31100048), the open program for key laboratory of industrial biotechnology ministry of education (KLIB-KF200904) and the 111 Project (No. 111-2-06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Wu.

Additional information

Xu Liu and Dan Wu contributed equally to this study and share first authorship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Wu, D., Wu, J. et al. Optimization of the production of Aspergillus niger α-glucosidase expressed in Pichia pastoris . World J Microbiol Biotechnol 29, 533–540 (2013). https://doi.org/10.1007/s11274-012-1207-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-012-1207-y

Keywords

Navigation