Skip to main content

Advertisement

Log in

Evaluation of probiotic properties of Lactobacillus plantarum strains isolated from Chinese sauerkraut

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Lactobacillus plantarum strains isolated and identified from naturally-fermented Chinese sauerkraut were examined in vitro for potential probiotic properties and in vivo for cholesterol-lowering effect in mice. Among 7 isolated L. plantarum strains, strains S2-5 and S4-1 were found to possess desirable probiotic properties including ability to survive at pH 2.0 for 60 min, tolerate pancreatin and bile salts, adhere to Caco-2 cells, produce high β-galactosidase activity and antimicrobial activity against Escherichia coli O157 and Shigella flexneri CMCC(B). In addition, strains S2-5 and S4-1 were susceptible to several antibiotics, and capable of reducing cholesterol level in MRS medium by assimilation of cholesterol at 20.39 and 22.28 μg ml−1, respectively. The in vivo study with L. plantarum S4-1 showed that feeding with fermented milk containing this strain was able to effectively reduce serum cholesterol level in mice, demonstrating its potential as an excellent probiotic candidate for applications in functional products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Agerbck M, Gerdes LU, Richelsen B (1995) Hypocholesterolaemic effect of a new fermented milk product in healthy middle aged men. Eur J Clin Nutr 49:346–352

    Google Scholar 

  • Ammor S, Dufour E, Zagorec M, Chaillou S, Chevallier I (2005) Characterization and selection of Lactobacillus sakei strains isolated from traditional dry sausage for their potential use as starter cultures. Food Microbiol 22:529–538

    Article  CAS  Google Scholar 

  • Charteris WP, Kelly PM, Morelli L, Collins JK (1998) Development and application of an in vitro methodology to determine the transit tolerance of potentially probiotic Lactobacillus and Bifidobacterium species in the upper human gastrointestinal tract. J Appl Microbiol 84:759–768

    Article  CAS  Google Scholar 

  • Collado MC, Gueimonde M, Hernandez M, Sanz Y, Salminen S (2005) Adhesion of selected Bifidobacterium strains to human intestinal mucus and its role in enteropathogen exclusion. J Food Prot 68:2672–2680

    Google Scholar 

  • Çon AH, Karasu N (2009) Determination of antagonistic starter cultures for pickle and olive processes. Czech J Food Sci 27:185–193

    Google Scholar 

  • Conway PL, Gorbach SL, Goldin BR (1987) Survival of lactic acid bacteria in the human stomach and adhesion to intestinal cells. J Dairy Sci 70:1–12

    Article  CAS  Google Scholar 

  • Delgado A, Brito D, Fevereiro P, Marques JF (2001) Antimicrobial activity of Lactobacillus plantarum, isolated from a traditional lactic acid fermentation of table olives. Lait 81:203–215

    Article  CAS  Google Scholar 

  • Ding WK, Shah NP (2007) Acid, bile, and heat tolerance of free and microencapsulated probiotic bacteria. J Food Sci 72:446–450

    Article  Google Scholar 

  • Duangjitcharoen Y, Kantachote D, Ongsakul M, Poosaran N, Chaiyasut C (2009) Potential use of probiotic Lactobacillus plantarum SS2 isolated from a fermented plant beverage: safety assessment and persistence in the murine gastrointestinal tract. World J Microbiol Biotechnol 25:315–321

    Article  Google Scholar 

  • Essid I, Medini M, Hassouna M (2009) Technological and safety properties of Lactobacillus plantarum strains isolated from a Tunisian traditional salted meat. Meat Sci 81:203–208

    Article  CAS  Google Scholar 

  • FAO/WHO (2002) Guidelines for the evaluation of probiotics in food. London

  • Fazeli MR, Vaghari E, Jamalifar H, Ebrahim Z, Samadi N (2009) Antimicrobial activity of Lactobacillus plantarum strains isolated from fermented olives origin. J Med Plants Res 81:14–18

    Google Scholar 

  • Fazeli H, Moshtaghian J, Mirlohi M, Shirzadi M (2010) Reduction in serum lipid parameters by incorporation of a native strain of Lactobacillus plantarum A7 in mice. Iran J Diabetes Lipid Disord 9:1–7

    CAS  Google Scholar 

  • Frece J, Kos B, Beganović J, Vuković S, Šušković J (2005) In vivo testing of functional properties of three selected probiotic strains. World J Microbiol Biotechnol 21:1401–1408

    Article  Google Scholar 

  • Fukushima Y, Miyaguchi S, Yamano T, Kaburagi T, Iino H, Ushida K (2007) Improvement of nutritional status and incidence of infection in hospitalised, enterally fed elderly by feeding of fermented milk containing probiotic Lactobacillus johnsonii La1 (NCC533). Br J Nutr 98:969–977

    Article  CAS  Google Scholar 

  • Georgieva RN, Iliev IN, Chipeva VA, Dimitonova SP, Samelis J, Danova ST (2008) Identification and in vitro characterization of Lactobacillus plantarum strains from artisanal Bulgarian white brined cheeses. J Basic Microb 48:234–244

    Article  CAS  Google Scholar 

  • Gilliland SE, Staley TE, Bush LJ (1984) Importance of bile tolerance of Lactobacillus acidophilus used as a dietary adjunct. J Dairy Sci 12:3045–3051

    Article  Google Scholar 

  • Hamon E, Horvatovich P, Izquierdo E, Bringel F, Marchionil E, Aoudé-Werner D, Ennahar S (2011) Comparative proteomic analysis of Lactobacillus plantarum for the identification of key proteins in bile tolerance. BMC Microbiol 11:63

    Article  Google Scholar 

  • Hydrominus B, Le Marrec C, Hadj Sassi AH, Deschamps A (2000) Acid and bile tolerance of spore forming lactic acid bacteria. Int J Food Microbiol 61:193–197

    Article  Google Scholar 

  • Jacobsen CN, Roesnfeldt Nielsen AE, Moller PL, Michaelsen KF, Paerregaard A, Sandstrom B, Tvede M, Jacobsen M (1999) Screening of probiotic activities of forty-seven strains of Lactobacillus spp. by in vitro techniques and evaluation of the colonization ability of five selected strains in humans. Appl Environ Microbiol 65:4949–4956

    CAS  Google Scholar 

  • Juntunen M, Kirjavainen PV, Ouwenhand AC, Salminen SJ, Isolauri E (2001) Adherence of probiotic bacteria to human intestinal mucus in healthy infants during rotavirus infection. Clin Diagn Lab Immun 8:293–296

    CAS  Google Scholar 

  • Karasu N, Şimşek Ö, Çon AH (2010) Technological and probiotic characteristics of Lactobacillus plantarum strains isolated from traditionally produced fermented vegetables. Ann Microbiol 60:227–234

    Article  CAS  Google Scholar 

  • Kleerebezem M, Vaughan EE (2009) Probiotic and gut lactobacilli and bifidobacteria: molecular approaches to study diversity and activity. Annu Rev Microbiol 63:269–290

    Article  CAS  Google Scholar 

  • Klein G, Pack A, Bonaparte C, Reuter G (1998) Taxonomy and physiology of probiotic lactic acid bacteria. Int J Food Microbiol 41:103–105

    Article  CAS  Google Scholar 

  • Klein G, Hallmann C, Casas IA, Abad J, Louwers J, Reuter G (2000) Exclusion of vanA, vanB and vanC type glycopeptides resistance in strains of Lactobacillus reuteri and Lactobacillus rhamnosus used as probiotics by polymerase chain reaction and hybridization methods. J Appl Microbiol 89:815–824

    Article  CAS  Google Scholar 

  • Kratz M, Cullen P, Wahrburg U (2002) The impact of dietary mono- and poly-unsaturated fatty acids on risk factors for atherosclerosis in humans. Eur J Lipid Sci Technol 104:300–311

    Article  CAS  Google Scholar 

  • Kumar R, Grover S, Batish VK (2011) Hypocholesterolaemic effect of dietary inclusion of two putative probiotic bile salt hydrolase-producing Lactobacillus plantarum strains in Sprague-Dawley rats. Brit J Nutr 105:561–573

    Article  CAS  Google Scholar 

  • Laparra JM, Sanz Y (2009) Comparison of in vitro models to study bacterial adhesion to the intestinal epithelium. Lett Appl Microbiol 49:695–701

    Article  CAS  Google Scholar 

  • Lardizabal JA, Deedwania P (2011) Lipid-lowering therapy with statins for the primary and secondary prevention of cardiovascular disease. Cardiol Clin 29:87–103

    Article  Google Scholar 

  • Lee HS, Gilliland SE, Carter S (2001) Amylolytic cultures of Lactobacillus acidophilus: potential probiotics to improve dietary starch utilization. J Food Sci 66:338–344

    Article  CAS  Google Scholar 

  • Maaike C, de Vires E, Vaughan E, Kleerebezem M, de Vos WM (2006) Lactobacillus plantarum-survival, functional and potential probiotic properties in the human intestinal tract. Int Dairy J 16:1018–1028

    Article  Google Scholar 

  • Mann GV, Spoerry A (1974) Studies of a surfactant and cholesteremia in the Maasai. Am J Clin Nutr 27:464–469

    CAS  Google Scholar 

  • Maragkoudakis PA, Zoumpopoulou G, Miaris C, Kalantzopoulos G, Pot B, Tsakalidou E (2006) Probiotic potential of Lactobacillus strains isolated from dairy products. Int Dairy J 16:189–199

    Article  CAS  Google Scholar 

  • Mathur S, Singh R (2005) Antibiotic resistance in food lactic acid bacteria-a review. Int J Food Microbiol 105:281–295

    Article  CAS  Google Scholar 

  • Miller JH (1972) Assay of β-galactosidase. In: Miller JH (ed) Experiments in molecular genetics. Cold Spring Harbor Laboratory, New York, pp 352–355

    Google Scholar 

  • Mukai T, Kaneko S, Matsumoto M, Ohori H (2004) Binding of Bifidobacterium bifidum and Lactobacillus reuteri to the carbohydrate moieties of intestinal glycolipids recognized by peanut agglutinin. Int J Food Microbiol 90:357–362

    Article  CAS  Google Scholar 

  • Nguyen TD, Kang JH, Lee MS (2007) Characterization of Lactobacillus plantarum PH04, a potential probiotic bacterium with cholesterol-lowering effects. Int J Food Microbiol 113:358–361

    Article  CAS  Google Scholar 

  • Ouwehand AC, Isolauri E, Kirjavainen PV, Salminen SJ (1999) Adhesion of four Bifidobacterium strains to human intestinal mucus from subjects in different age groups. FEMS Microbiol Lett 172:61–64

    Article  CAS  Google Scholar 

  • Ouwenhand AC, Tuomola EM, Tolkko S, Salminen S (2001) Assessment of adhesion properties of novel probiotic strains to human intestinal mucus. Int J Food Microbiol 64:119–126

    Article  Google Scholar 

  • Pavan S, Hols P, Delcour J, Geoffroy MC, Grangette C, Kleerebezem M, Mercenier A (2000) Adaptation of the nisincontrolled expression system in Lactobacillus plantarum: a tool to study in vivo biological effects. Appl Environ Microbiol 66:4427–4432

    Article  CAS  Google Scholar 

  • Pereira DIA, Gibson GR (2002) Cholesterol assimilation by lactic acid bacteria and bifidobacteria isolated from the gut. Appl Environ Microbiol 68:4689–4693

    Article  CAS  Google Scholar 

  • Prins WA, Botha M, Botes M, de Kwaadsteniet M, Endo A, Dicks LM (2009) Lactobacillus plantarum 24, isolated from the Marula fruit (Sclerocarya birrea), has probiotic properties and harbors genes encoding the production of three bacteriocins. Curr Microbiol 61:584–589

    Article  Google Scholar 

  • Ruas-Madiedo P, Gueimonde M, Margolles A, De Los R-GC, Salminen S (2006) Exopolysaccharides produced by probiotic strains modify the adhesion of probiotics and enteropathogens to human intestinal mucus. J Food Prot 69:2011–2015

    CAS  Google Scholar 

  • Rudel LL, Morris MD (1973) Determination of cholesterol using σ-phtaldealdehyde. J Lipid Res 14:364–366

    CAS  Google Scholar 

  • Saarela M, Morgensen G, Forden R, Matoto J, Mattla-Sanholm T (2000) Probiotic bacteria: safety, functional and technological properties. J Bacteriol 84:197–215

    CAS  Google Scholar 

  • Salminen S, Von Wright A, Morelli L, Marteau P, Brassart D, de Vos WM, Fonden R, Saxelin M, Collins K, Mogensen G, Birkeland SE, Mattila-Sandholm T (1998) Demonstration of safety of probiotics-a review. Int J Food Microbiol 23:179–196

    Google Scholar 

  • Sanders ME, Huis int Veld J (1999) Bringing a probiotic containing functional food to the market: microbiological, product regulatory and labeling issues. Antonie Leeuw J G 76:293–315

    Article  CAS  Google Scholar 

  • Sarkar S (2003) Potential of acidophilus milk to lower cholesterol. Nutr Food Sci 33:273–277

    Article  Google Scholar 

  • Schilliager U, Geisen R, Holzapfel WH (1997) Potential of antagonistic microorganisms and bacteriocins for the biological preservation of food. Trends Food Sci Tech 7:158–164

    Article  Google Scholar 

  • Schwab C, Vogel R, Gänzle MG (2007) Influence of oligosaccharides on the viability and membrane properties of Lactobacillus reuteri TMW1.106 during freeze-drying. Cryobiology 55:108–144

    Google Scholar 

  • Shah NP (2001) Functional foods from probiotics and prebiotics. Food Technol 48:85–89

    Google Scholar 

  • Singh TP, Kaur G, Malik RK, Schillinger U, Guigas C, Kapila S (2012) Characterization of intestinal Lactobacillus reuteri strains as potential probiotics. Probiotics Antimicro Prot 4:47–58

    Google Scholar 

  • Tallon R, Arias S, Bressollier P, Urdaci MC (2007) Strain and matrix-dependent adhesion of Lactobacillus plantarum is mediated by proteinaceous bacterial compounds. J Appl Microbiol 102:442–451

    Article  CAS  Google Scholar 

  • Tinrat S, Saraya S, Chomnawang MT (2011) Isolation and characterization of Lactobacillus salivarius MTC 1026 as a potential probiotic. J Gen Appl Microbiol 57:365–378

    Google Scholar 

  • Torres-Rodriguez A, Donoghue AM, Donoghue DJ, Barton JT, Tellez G, Hargis BM (2007) Performance and condemnation rate analysis of commercial turkey flocks treated with a Lactobacillus spp.-based probiotic. Poult Sci 86:444–446

    CAS  Google Scholar 

  • Tuomola EM, Salminen SJ (1998) Adhesion of some probiotic and dairy Lactobacillus strains to Caco-2 cell cultures. Int J Food Microbiol 41:45–51

    Article  CAS  Google Scholar 

  • Van Baarlena P, Freddy J, van Hemerta S, van der Meera C, de Vose W, de Groota P, Hooivelda G, Brummera RJ, Kleerebezema M (2009) Differential NF-κB pathways induction by Lactobacillus plantarum in the duodenum of healthy humans correlating with immune tolerance. PNAS 106:2371–2376

    Article  Google Scholar 

  • Yang Z, Li S, Zhang X, Zeng X, Li D, Zhao Y, Zhang J (2010) Capsular and slime-polysaccharide production by Lactobacillus rhamnosus JAAS8 isolated from Chinese sauerkraut: potential application in fermented milk products. J Biosci Bioeng 110:53–57

    Article  CAS  Google Scholar 

  • Zago M, Fornasari ME, Carminati D, Burns P, Suàrez V, Vinderola G, Reinheimer J, Giraffa G (2011) Characterization and probiotic potential of Lactobacillus plantarum strains isolated from cheeses. Food Microbiol 28:1033–1040

    Article  CAS  Google Scholar 

  • Zhang L, Zhang X, Liu C, Li C, Li S, Li T, Li D, Zhao Y, Yang Z (2012) Manufacture of Cheddar cheese using probiotic Lactobacillus plantarum K25 and its cholesterol-lowering effects in a mice model. World J Microbiol Biotechnol. doi:10.1007/s11274-012-1165-4

Download references

Acknowledgments

The financial support for this work from China Agriculture Research System (CARS-37), National Public Benefit Research (Agriculture) Foundation (200903043) and Natural Science Foundation of China (30670057) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhennai Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, Z., Zhang, X., Li, S. et al. Evaluation of probiotic properties of Lactobacillus plantarum strains isolated from Chinese sauerkraut. World J Microbiol Biotechnol 29, 489–498 (2013). https://doi.org/10.1007/s11274-012-1202-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-012-1202-3

Keywords