Skip to main content
Log in

Effects of critical medium components on the production of antifungal lipopeptides from Bacillus amyloliquefaciens Q-426 exhibiting excellent biosurfactant properties

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, influence of three critical parameters nitrogen sources, initial pH and metal ions was discussed in the production of antifungal lipopeptides from Bacillus amyloliquefaciens Q-426. The results revealed that lipopeptide biosynthesis might have relations with the population density of strain Q-426 and some special amino acids. Also, the alkali-resistant strain Q-426 could grow well in the presence of Fe2+ ions below 0.8 M l−1 and still maintain the competitive advantage below 0.2 M l−1. Moreover, lipopeptides exhibited significant inhibitory activities against Curvularia lunata (Walk) Boed even at the extreme conditions of temperature, pH and salinity. Finally, biosurfactant properties of lipopeptides mixture were evaluated by use with totally six different methods including bacterial adhesion to hydrocarbons assay, lipase activity, hemolytic activity, emulsification activity, oil displacement test and surface tension measurement. The research suggested that B. amyloliquefaciens Q-426 may have great potential in agricultural and environmental fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdel-Mawgoud AM, Aboulwafa MM, Hassouna NA (2008) Characterization of surfactin produced by Bacillus subtilis isolate BS5. Appl Biochem Biotechnol 150(3):289–303. doi:10.1007/s12010-008-8155-x

    Article  CAS  Google Scholar 

  • Al-Ajlani MM, Sheikh MA, Ahmad Z, Hasnain S (2007) Production of surfactin from Bacillus subtilis MZ-7 grown on pharmamedia commercial medium. Microb Cell Fact 6:17. doi:10.1186/1475-2859-6-17

    Article  Google Scholar 

  • Arima K, Kakinuma A, Tamura G (1968) Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. Biochem Biophys Res Commun 31(3):488–494

    Article  CAS  Google Scholar 

  • Carrillo PG, Mardaraz C, Pitta-Alvarez SI, Giulietti AM (1996) Isolation and selection of biosurfactant-producing bacteria. World J Microbiol Biotechnol 12(1):82–84

    Article  Google Scholar 

  • Das P, Mukherjee S, Sen R (2008) Genetic regulations of the biosynthesis of microbial surfactants: an overview. Biotechnol Genet Eng Rev 25:165–185. doi:10.5661/bger-25-165

    Article  CAS  Google Scholar 

  • Davis DA, Lynch HC, Varley J (1999) The production of surfactin in batch culture by Bacillus subtilis ATCC 21332 is strongly influenced by the conditions of nitrogen metabolism. Enzyme Microb Technol 25:329–332. doi:10.1016/S0141-0229

    Article  Google Scholar 

  • Etchegaray A, de Castro Bueno C, de Melo IS, Tsai SM, Fiore MF, Silva-Stenico ME, de Moraes LA, Teschke O (2008) Effect of a highly concentrated lipopeptide extract of Bacillus subtilis on fungal and bacterial cells. Arch Microbiol 190(6):611–622. doi:10.1007/s00203-008-0409-z

    Article  CAS  Google Scholar 

  • Fan B, Chen XH, Budiharjo A, Bleiss W, Vater J, Borriss R (2011) Efficient colonization of plant roots by the plant growth promoting bacterium Bacillus amyloliquefaciens FZB42, engineered to express green fluorescent protein. J Biotechnol 151(4):303–311. doi:10.1016/j.jbiotec.2010.12.022

    Article  CAS  Google Scholar 

  • Grover M, Nain L, Singh SB, Saxena AK (2010) Molecular and biochemical approaches for characterization of antifungal trait of a potent biocontrol agent Bacillus subtilis RP24. Curr Microbiol 60(2):99–106. doi:10.1007/s00284-009-9508-6

    Article  CAS  Google Scholar 

  • Kiran GS, Hema TA, Gandhimathi R (2009) Optimization and production of a biosurfactant from the sponge-associated marine fungus Aspergillus ustus MSF3. Colloid Surf B 73(2):250–256. doi:10.1016/j.colsurfb.2009.05.025

    Article  CAS  Google Scholar 

  • Kokare CR, Kadam SS, Mahadik KR, Chopade BA (2007) Studies on bioemulsifier production from marine Streptomyces sp. S1. Ind J Biotechnol 6:78–84

    CAS  Google Scholar 

  • Koumoutsi A, Chen XH, Henne A, Liesegang H, Hitzeroth G, Franke P, Vater J, Borriss R (2004) Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. J Bacteriol 186:1084–1096. doi:10.1128/JB.186.4.1084-1096.2004

    Article  CAS  Google Scholar 

  • Koumoutsi A, Chen XH, Vater J, Borriss R (2007) DegU and YczE positively regulate the synthesis of bacillomycin D by Bacillus amyloliquefaciens strain FZB42. Appl Environ Microbiol 73(21):6953–6964. doi:10.1128/AEM.00565-07

    Article  CAS  Google Scholar 

  • Kraas FI, Helmetag V, Wittmann M, Strieker M, Marahiel MA (2010) Functional dissection of surfactin synthetase initiation module reveals insights into the mechanism of lipoinitiation. Chem Biol 17(8):872–880. doi:10.1016/j.chembiol.2010.06.015

    Article  CAS  Google Scholar 

  • Lin TP (2003) Cloning and sequence analysis of fenY, a gene involved in fengycin synthesis. Chia-Nan Annu Bull 29:128–135

    Google Scholar 

  • Liu XY, Yang SZ, Mu BZ (2005) Molecular structures of microbial lipopeptides. Biotechnol Bull 4:18–26 [in Chinese]

    Google Scholar 

  • Mizumoto S, Shoda M (2007) Medium optimization of antifungal lipopeptide, iturin A, production by Bacillus subtilis in solid-state fermentation by response surface methodology. Appl Microbiol Biotechnol 76(1):101–108. doi:10.1007/s00253-007-0994-9

    Article  CAS  Google Scholar 

  • Morikawa M, Daido H, Takao T, Murata S, Shimonishi Y, Imanaka T (1993) A new lipopeptide biosurfactant produced by Arthrobacter sp strain MIS 38. J Bacteriol 175:6459–6466

    CAS  Google Scholar 

  • Mukherjee AK, Das K (2005) Correlation between diverse cyclic lipopeptides production and regulation of growth and substrate utilization by Bacillus subtilis strains in a particular habitat. FEMS Microbiol Ecol 54:479–489. doi:10.1016/j.femsec.2005.06.003

    Article  CAS  Google Scholar 

  • Nihorimbere V, Cawoy H, Seyer A, Brunelle A, Thonart P, Ongena M (2012) Impact of rhizosphere factors on cyclic lipopeptide signature from the plant beneficial strain Bacillus amyloliquefaciens S499. FEMS Microbiol Ecol 79:176–191. doi:10.1111/j.1574-6941.2011.01208.x

    Article  CAS  Google Scholar 

  • Peypoux F, Michel G (1992) Controlled biosynthesis of Val7-and Leu7-surfactins. Appl Microbiol Biotechnol 16:515–517. doi:10.1007/BF00170194

    Google Scholar 

  • Pruthi V, Cameotra SS (1997) Rapid identification of biosurfactant-producing bacterial strains using a cell surface hydrophobicity technique. Biotechnol Tech 11(9):671–677. doi:10.1023/A:1018411427192

    Article  CAS  Google Scholar 

  • Raaijmakers JM, Bruijn ID, Nybroe O, Ongena M (2010) Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev 34:1037–1062. doi:10.1111/j.1574-6976.2010.00221.x

    CAS  Google Scholar 

  • Reder-Christ K, Schmidt Y, Dörr M, Sahl HG, Josten M, Raaijmakers JM, Gross H, Bendas G (2012) Model membrane studies for characterization of different antibiotic activities of lipopeptides from Pseudomonas. Biochim Biophys Acta 1818(3):566–573. doi:10.1016/j.bbamem.2011.08.007

    Article  CAS  Google Scholar 

  • Reuter K, Mofid MR, Marahiel MA, Ficner R (1999) Crystal structure of the surfactin synthetase-activating enzyme Sfp: a prototype of the 4’-phosphopantetheinyl transferase superfamily. EMBO J 18(23):6823–6831. doi:10.1093/emboj/18.23.6823

    Article  CAS  Google Scholar 

  • Rosenberg M, Gutnick D, Rosenberg E (1980) Adherence of bacteria to hydrocarbons: a simple method for measuring cell-surface hydrophobicity. FEMS Microbiol Lett 9:29–33

    Article  CAS  Google Scholar 

  • Seghal Kiran G, Anto Thomas T, Selvin J, Sabarathnam B, Lipton AP (2010) Optimization and characterization of a new lipopeptide biosurfactant produced by marine Brevibacterium aureum MSA13 in solid state culture. Bioresour Technol 101(7):2389–2396. doi:10.1016/j.biortech.2009.11.023

    Article  CAS  Google Scholar 

  • Surachai T, Pimporn L, Dammrong S, Lumyong S (2007) Preliminary screening of biosurfactant producing microorganisms isolated from hot Spring and garages in Northern Thailand. Kmitl Sci Tech 7:38–43

    Google Scholar 

  • Vanittanakom N, Loeffler W, Koch U, Jung G (1986) Fengycin—a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F29-3. J Antibiot 39:888–901

    Article  CAS  Google Scholar 

  • Vater J, Kablitz B, Wilde C, Franke P, Mehta N, Cameotra SS (2002) Matrix-assisted laser desorption ionization-time of flight mass spectrometry of lipopeptide biosurfactants in whole cells and culture filtrates of Bacillus subtilis C-1 isolated from petroleum sludge. Appl Environ Microbiol 68:6210–6219. doi:10.1128/AEM.68(12),6210-6219.2002

    Article  CAS  Google Scholar 

  • Velázquez-Aradillas JC, Toribio-Jiménez J, del Carmen Angeles Gonzalez-Chavez M, Bautista F, Cebrian ME, Esparza-Garcia FJ, Rodriguez-Vazquez R (2011) Characterisation of a biosurfactant produced by a Bacillus cereus strain tolerant to cadmium and isolated from green coffee grain. World J Microbiol Biotechnol 27:907–913. doi:10.1007/s11274-010-0533-1

  • Wang XJ (1997) The determination of the surface tension of ethanol aqueous solution. J Tonghua Teach Coll 4:40–44 [in Chinese]

    Google Scholar 

  • Warne Zoueki C, Ghoshal S, Tufenkji N (2010) Bacterial adhesion to hydrocarbons: role of asphaltenes and resins. Colloids Surf B Biointerfaces 79(1):219–226. doi:10.1016/j.colsurfb.2010.03.054

    Article  CAS  Google Scholar 

  • Wei YH, Chu IM (2002) Mn2 + improves surfactin production by Bacillus subtilis. Biotechnol Lett 24(6):479–482. doi:10.1023/A:1014534021276

    Article  CAS  Google Scholar 

  • Yao SY, Gao XW, Fuchsbauer N, Hillen W, Vater J, Wang JS (2003) Cloning, sequencing, and characterization of the genetic region relevant to biosynthesis of the lipopeptides iturin A and surfactin in Bacillus subtilis. Curr Microbiol 47:272–277. doi:10.1007/s00284-002-4008-y

    Article  CAS  Google Scholar 

  • Youssef NH, Duncan KE, Nagle DP, Savage KN, Knapp RM, McInerney MJ (2004) Comparison of methods to detect biosurfactant production by diverse microorganisms. J Microbiol Methods 56(3):339–347. doi:10.1016/j.mimet.2003.11.001

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the State Ethic Affairs Commission, the Minister of Education (SEAC-ME) and the Key Laboratory Foundation of Liaoning Provincial at the Department of Education, China. Especially, we thanked to Dr. Jing Zhao (Dalian Nationalities University) for revising the whole paper carefully.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunshan Quan.

Additional information

Pengchao Zhao, Chunshan Quan: Equal contribution as first authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, P., Quan, C., Jin, L. et al. Effects of critical medium components on the production of antifungal lipopeptides from Bacillus amyloliquefaciens Q-426 exhibiting excellent biosurfactant properties. World J Microbiol Biotechnol 29, 401–409 (2013). https://doi.org/10.1007/s11274-012-1180-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-012-1180-5

Keywords

Navigation