Advertisement

World Journal of Microbiology and Biotechnology

, Volume 29, Issue 2, pp 191–207 | Cite as

Myconanotechnology in agriculture: a perspective

  • Prem Lal KashyapEmail author
  • Sudheer Kumar
  • Alok Kumar Srivastava
  • Arun Kumar Sharma
REVIEW

Abstract

Myconanotechnology is an emerging field, where fungi can be harnessed for the synthesis of nanomaterials or nanostructures with desirable shape and size. Though myconanotechnology is in its infancy, potential applications provide exciting waves of transformation in agriculture and fascinate microbiologists and other researchers to contribute in providing incremental solutions through green chemistry approaches for advancing food security. In this article, we provide a brief overview of the research efforts on the mycogenic synthesis of nanoparticles with particular emphasis on mechanisms and potential applications in agriculture and allied sectors.

Keywords

Mycosynthesis Nanoformulation Nanowires Nanofactories Quantum dots 

References

  1. Acharya K, Chattopadhyay D, Patra S, Sarkar J, Saha S (2011) Mycosynthesis of silver nanoparticles and investigation of their antimicrobial activity. JoNSNEA 1(1):17–26Google Scholar
  2. Afreen RV, Ranganath E (2011) Synthesis of monodispersed silver nanoparticles by Rhizopus stolonifer and its antibacterial activity against MDR strains of Pseudomonas aeruginosa from burnt patients. Int J Environ Sci 1(7):1582–1592Google Scholar
  3. Aguilar-Méndez AM, Martín-martínez ES, Ortega-Arroyo L, Cobián-Portillo G, Sa′nchez-Espı′ndola E (2010) Synthesis and characterization of silver nanoparticles: effect on phytopathogen Colletotrichum gloesporioides. J Nanopart Res 13(6):2525–2532CrossRefGoogle Scholar
  4. Ahmad A, Mukherjee P, Mandal D, Senapati S, Khan MI, Kumar R, Sastry M (2002) Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus Fusarium oxysporum. J Am Chem Soc 124(1):12108–12109CrossRefGoogle Scholar
  5. Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B 28(4):313–318CrossRefGoogle Scholar
  6. Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2005) Extra-/intracellular biosynthesis of gold nanoparticles by an alkalotolerant fungus Trichothecium sp. J Biomed Nanotechnol 1(1):47–53CrossRefGoogle Scholar
  7. Anandan S, Grieser F, Kumar AM (2008) Sonochemical synthesis of Au-Ag core-shell bimetallic nanoparticles. J Phys Chem C 112(1):15102–15105CrossRefGoogle Scholar
  8. Anitha TS, Palanivelu P (2011) Synthesis and structural characterization of polydisperse silver and multishaped gold nanoparticles using Fusarium oxysporum MTCC 284. Dig J Nanomater Bios 6(4):1587–1595Google Scholar
  9. Bakar NA, Salleh MM, Umar AA, Yahaya M (2011) The detection of pesticides in water using ZnCdSe quantum dot films. Adv Nat Sci Nanosci Nanotechnol 2(1):025011CrossRefGoogle Scholar
  10. Balaji DS, Basavaraja S, Deshpande R, Mahesh DB, Prabhakar BK, Venkataraman A (2009) Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids Surf B 68(1):88–92CrossRefGoogle Scholar
  11. Bansal V, Rautaray D, Bharde A, Ahire K, Sanyal A, Ahmad A, Sastry M (2005) Fungus-mediated biosynthesis of silica and titania particles. J Mater Chem 15(26):2583–2589CrossRefGoogle Scholar
  12. Bansal V, Poddar P, Ahmad A, Sastry M (2006) Room-temperature biosynthesis of ferroelectric barium titanate nanoparticles. J Am Chem Soc 128(36):11958–11963CrossRefGoogle Scholar
  13. Bao HF, Hao N, Yang YX, Zhao DY (2010) Biosynthesis of biocompatible cadmium telluride quantum dots using yeast cells. Nano Res 3(7):481–489CrossRefGoogle Scholar
  14. Basavaraja S, Balaji SD, Legashetty A, Rasab AH, Venkatraman A (2008) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Mater Res Bull 43(5):1164–1170CrossRefGoogle Scholar
  15. Behari J (2010) Principles of nanoscience: an overview. Indian J Exp Biotechnol 48(10):1008–1019Google Scholar
  16. Benn TM, Westerhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42(11):4133–4139CrossRefGoogle Scholar
  17. Bhainsa KC, D’souza SF (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf B 47(1):160–164CrossRefGoogle Scholar
  18. Bharde A, Rautray D, Bansal V, Ahmad A, Sarkar I, Yusuf SM, Sanyal M, Sastry M (2006) Extracellular biosynthesis of magnetite using fungi. Small 2(1):135–141CrossRefGoogle Scholar
  19. Bhardwaj N, Kundu SC (2011) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28(3):325–347CrossRefGoogle Scholar
  20. Bhattacharya D, Gupta RK (2005) Nanotechnology and potential of microorganisms. Crit Rev Biotechnol 25(4):199–204CrossRefGoogle Scholar
  21. Bigall NC, Eychmüller A (2010) Synthesis of noble metal nanoparticles and their non-ordered superstructures. Philos Trans R Soc London Ser A 368:1385–1404CrossRefGoogle Scholar
  22. Binupriya AR, Sathishkumarb M, Vijayaraghavanb K, Yuna S-I (2010) Bioreduction of trivalent aurum to nano-crystalline gold particles by active and inactive cells and cell-free extract of Aspergillus oryzae var. viridis. J Hazard Mater 177:539–545CrossRefGoogle Scholar
  23. Birla SS, Tiwari VV, Gade AK, Ingle AP, Yadav AP, Rai MK (2009) Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Lett Appl Microbiol 48(2):173–179CrossRefGoogle Scholar
  24. Boehm AL, Martinon I, Zerrouk R, Rump E, Fessi H (2003) Nanoprecipitation technique for the encapsulation of agrochemical active ingredients. J Microencapsul 20:433–441CrossRefGoogle Scholar
  25. Castro-Longoria E, Vilchis-Nestor AR, Avalos-Borja M (2011) Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora Crassa. Colloids Surf B 83:42–48CrossRefGoogle Scholar
  26. Chau C-F, Wu S-H, Yen G-C (2007) The development of regulations for food nanotechnology. Trends Food Sci Technol 18:269–280CrossRefGoogle Scholar
  27. Chen JC, Lin ZH, Ma XX (2003) Evidence of the production of silver nanoparticles via pretreatment of Phoma sp.3.2883 with silver nitrate. Lett Appl Microbiol 37(2):105–108CrossRefGoogle Scholar
  28. Chen G-Q, Zou Z-J, Zeng G-M, Yan M, Fan J-Q, Chen A-W, Yang F, Zhang W-J, Wang L (2011) Coarsening of extracellularly biosynthesized cadmium crystal particles induced by thioacetamide in solution. Chemosphere 83(9):1201–1207CrossRefGoogle Scholar
  29. Cheng Y, Liua Y, Huanga J, Lia K, Zhang W, Xiana Y, Jin L (2009) Combining biofunctional magnetic nanoparticles and ATP bioluminescence for rapid detection of Escherichia coli. Talanta 77(4):1332–1336CrossRefGoogle Scholar
  30. Christou P, Mccabe DE, Swain WF (1988) Stable transformation of soybean callus by DNA-coated gold particles. Plant Physiol 87:671–674CrossRefGoogle Scholar
  31. Das SK, Das AR, Guha AK (2009) Gold nanoparticles: microbial synthesis and application in water hygiene management. Langmuir 25:8192–8199CrossRefGoogle Scholar
  32. DeRosa MC, Schnitzer M, Walsh R, Sultan Y (2010) Nanotechnology in fertilizers. Nat Nanotechnol 5:91CrossRefGoogle Scholar
  33. Dhillon GS, Brar SK, Kaur S, Verma M (2012) Green approach for nanoparticle biosynthesis by fungi: current trends and applications. Crit Rev Biotechnol 32:49–73CrossRefGoogle Scholar
  34. Drummen GPC (2010) Quantum dots—from synthesis to applications in biomedicine and life sciences. Int J Mol Sci 11:154–163CrossRefGoogle Scholar
  35. Du L, Xian L, Feng J-X (2011) Rapid extra-/intracellular biosynthesis of gold nanoparticles by the fungus Penicillium sp. J Nanopart Res 13:921–930CrossRefGoogle Scholar
  36. Durán N, Marcato PD, Alves OL, Desouza G, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3:1–8CrossRefGoogle Scholar
  37. Durán N, Marcato PD, De S, Gabriel IH, Alves OL, Esposito E (2007) Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J Biomed Nanotechnol 3:203–208CrossRefGoogle Scholar
  38. El-Rafie MH, Mohamed AA, Shaheen THI, Hebeish A (2010) Antimicrobial effect of silver nanoparticles produced by fungal process on cotton fabrics. Carbohydr Polym 80:779–782CrossRefGoogle Scholar
  39. Elumalai EK, Prasad TNVKV, Nagajyothi PC, David E (2011) A bird’s eye view on biogenic silver nanoparticles and their applications. Der Chem Sin 2:88–97Google Scholar
  40. Fayaz AM, Balaji K, Girilal M, Kalaichelvan PT, Venkatesan R (2009) Mycobased synthesis of silver nanoparticles and their incorporation into sodium alginate films for vegetable and fruit preservation. J Agric Food Chem 57:6246–6252CrossRefGoogle Scholar
  41. Fayaz M, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R (2010) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomed Nanotechnol Biol Med 6:103–109CrossRefGoogle Scholar
  42. Gade A, Bonde PP, Ingle AP, Marcato P, Duran N, Rai MK (2008) Exploitation of Aspergillus niger for synthesis of silver nanoparticles. J Biobased Mater Bioenergy 2(3):1–5CrossRefGoogle Scholar
  43. Gade A, Ingle A, Whiteley C, Rai M (2010) Mycogenic metal nanoparticles: progress and applications. Biotechnol Lett 32:593–600CrossRefGoogle Scholar
  44. Gade A, Rai M, Kulkarni S (2011) Phoma sorghina, a phytopathogen mediated synthesis of unique silver rods. Int J Green Nanotechnol 3:153–159CrossRefGoogle Scholar
  45. Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M (2009) Fungus mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomed Nanotechnol Biol Med 5:382–386CrossRefGoogle Scholar
  46. García M, Forbe T, Gonzalez E (2010) Potential applications of nanotechnology in the agro-food sector. Ciênc Tecnol Aliment Campinas 30(3):573–581CrossRefGoogle Scholar
  47. Gericke M, Pinches A (2006) Biological synthesis of metal nanoparticles. Hydrometallurgy 83:132–140CrossRefGoogle Scholar
  48. González-Melendi P, Fernández-Pacheco R, Coronado MJ, Corredor E, Testillano PS, Risueño MC, Marquina C, Ibarra MR, Rubiales D, Pérez-De-Luque A (2008) Nanoparticles as smart treatment-delivery systems in plants: assessment of different techniques of microscopy for their visualization in plant tissues. Ann Bot 101:187–195CrossRefGoogle Scholar
  49. Goswami A, Roy I, Sengupta S, Debnath N (2010) Novel applications of solid and liquid formulations of nanoparticles against insect pests and pathogens. Thin Solid Films 519:1252–1257CrossRefGoogle Scholar
  50. Govender Y, Riddin T, Gericke M, Whiteley CG (2009) Bioreduction of platinum salts into nanoparticles: a mechanistic perspective. Biotechnol Lett 31:95–100CrossRefGoogle Scholar
  51. He S, Zhang Y, Guo Z, Gu N (2008) Biological synthesis of gold nanowires using extract of Rhodopseudomonas capsulate. Biotechnol Progr 24:476–480CrossRefGoogle Scholar
  52. Hemath NKS, Kumar G, Karthik L, Bhaskara Rao KV (2010) Extracellular biosynthesis of silver nanoparticles using the filamentous fungus Penicillium sp. Arch Appl Sci Res 2:161–167Google Scholar
  53. Hu CW, Lia M, Cui YB, Li DS, Chen J, Yang LY (2010) Toxicological effects of TiO2 and ZnO nanoparticles in soil on earthworm Eisenia fetida. Soil Biol Biochem 42:586–591CrossRefGoogle Scholar
  54. Ingle A, Gade A, Pierrat S, Sönnichsen C, Rai M (2008) Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr Nanosci 4:141–144CrossRefGoogle Scholar
  55. Ingle A, Gade A, Bawaskar M, Rai M (2009) Fusarium solani: a novel biological agent for the extracellular synthesis of silver nanoparticles. J Nanopart Res 11:2079–2085CrossRefGoogle Scholar
  56. Jain N, Bhargava A, Majumdar S, Tarafdar JC, Panwar J (2010) Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: a mechanism perspective. Nanoscale 3:635–641CrossRefGoogle Scholar
  57. Kang T, Yoo SM, Kang M, Lee H, Kim H, Lee SY, Kim B (2012) Single-step multiplex detection of toxic metal ions by Au nanowires-on-chip sensor using reporter elimination. Lab Chip 12:3077–3081CrossRefGoogle Scholar
  58. Kannan N, Subbalaxmi S (2011) Biogenesis of nanoparticles—a current perspective. Rev Adv Mater Sci 27:99–114Google Scholar
  59. Karbasian M, Atyabi SM, Siadat SD, Momem SB, Norouzian D (2008) Optimizing nano-silver formation by Fusarium oxysporum (PTCC 5115) employing response surface methodology. Am J Agric Biol Sci 3:433–437CrossRefGoogle Scholar
  60. Karimi N, Minaei S, Almassi M, Shahverdi AR (2012) Application of silver nano-particles for protection of seeds in different soils. Afr J Agric Res 7:1863–1869Google Scholar
  61. Kathiresan K, Manivannan S, Nabeel AM, Dhivya B (2009) Studies on silver nanoparticles synthesized by a marine fungus Penicillum fellutanum isolated from coastal mangrove sediment. Colloids Surf B 71:133–137CrossRefGoogle Scholar
  62. Kim H, Kang H, Chu G, Byun G (2008) Antifungal effectiveness of nanosilver colloid against rose powdery mildew in greenhouses. Solid State Phenom 135:15–18CrossRefGoogle Scholar
  63. Kim SW, Kim KS, Lamsal K, Kim YJ, Kim SB, Jung M, Sim SJ, Kim HS, Chang SJ, Kim JK, Lee YS (2009) An in vitro study of the antifungal effect of silver nanoparticles on oak wilt pathogen Raffaelea sp. J Microbiol Biotechnol 19:760–764Google Scholar
  64. Korbekandi H, Iravani S, Abbasi S (2009) Production of nanoparticles using organisms. Crit Rev Biotechnol 29:279–306CrossRefGoogle Scholar
  65. Krumov N, Perner-Nochta I, Oder S, Gotcheva V, Angelov A, Posten P (2009) Production of inorganic nanoparticles by microorganisms. Chem Eng Technol 32:1026–1035CrossRefGoogle Scholar
  66. Kukowska-Latallo JF, Candido KA, Cao Z, Nigavekar SS, Majoros IJ, Thomas TP, Balogh LP, Khan MK, Baker JR Jr (2005) Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res 65:5317–5324CrossRefGoogle Scholar
  67. Kumar AS, Ansary AA, Ahmad A, Khan MI (2007a) Extracellular biosynthesis of CdSe quantum dots by the fungus Fusarium oxysporum. J Biomed Nanotechnol 3:190–194CrossRefGoogle Scholar
  68. Kumar SA, Abyaneh MK, Gosavi SW, Kulkarni SK, Pasricha R, Ahmad A, Khan MI (2007b) Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnol Lett 29:439–445CrossRefGoogle Scholar
  69. Kumar SA, Peter YA, Nadaeu JL (2008) Facile biosynthesis, separation, conjugation of gold nanoparticles to doxorubicin. Nanotechnology 19:495101CrossRefGoogle Scholar
  70. Lang SS (2003) Waste fiber can be recycled into valuable products using new technique of electrospinning. Cornell researchers report. http://www.news.cornell.edu/releases/Sept03/electrospinning.ACS.ssl.html
  71. Lee W-M, An Y-J, Yoon H, Kwbon H-S (2008) Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestrivum): plant agar test for water-insoluble nanoparticles. Environ Toxicol Chem 27:1915–1921CrossRefGoogle Scholar
  72. Lee CW, Mahendra S, Zodrow K, Li D, Tsai Y-C, Braam J (2010) Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ Toxicol Chem 29:669–675CrossRefGoogle Scholar
  73. Li G, He D, Qian Y, Guan B, Gao S, Cui Y, Yokoyama K, Wang L (2012) Fungus-mediated green synthesis of silver nanoparticles using Aspergillus terreus. Int J Mol Sci 13:466–476CrossRefGoogle Scholar
  74. Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250CrossRefGoogle Scholar
  75. Liu Y, Tong Z, Prud’homme RK (2008) Stabilized polymeric nanoparticles for controlled and efficient release of bifenthrin. Pest Manag Sci 64:808–812CrossRefGoogle Scholar
  76. Rehman A, Majeed MI, Ihsan A, Hussain SZ, Saif-Ur-Rehman, Ghauri MA, Khalid ZM, Hussain I (2011) Living fungal hyphae-templated porous gold microwires using nanoparticles as building blocks. J Nanopart Res 13:6747–6754Google Scholar
  77. Maliszewska I, Szewczyk K, Waszak K (2009) Biological synthesis of silver nanoparticles. J Phys Conf Ser 146:2025Google Scholar
  78. Mandal D, Bolander ME, Mukhopadhyay D, Sarkar G, Mukherjee P (2006) The use of microorganisms for the formation of metal nanoparticles and their application. Appl Environ Biotechnol 69:485–492CrossRefGoogle Scholar
  79. Marchiol L (2012) Synthesis of metal nanoparticles in living plants. Italian J Agron 7:e37Google Scholar
  80. Min JS, Kim KS, Kim SW, Jung JH, Lamsal K, Kim SB, Jung M, Lee YS (2009) Effects of colloidal silver nanoparticles on sclerotium-forming phytopathogenic fungi. Plant Pathol J 25:376–380CrossRefGoogle Scholar
  81. Moaveni P, Karimi K, Valojerdi MZ (2011) The nanoparticles in plants: review paper. J Nano Struct Chem 2:59–78Google Scholar
  82. Moghaddam KM (2010) An introduction to microbial metal nanoparticle preparation method. J Young Investig 19:1–7Google Scholar
  83. Mohammadian A, Shaojaosadati SA, Rezee MH (2007) Fusarium oxysporum mediates photogeneration of silver nanoparticles. Sci Iran 14:323–326Google Scholar
  84. Moharrer S, Mohammad B, Gharamohammad RA, Yargol M (2012) Biological synthesis of silver nanoparticles by Aspergillus flavus, isolated from soil of Ahar copper mine. Indian J Sci Technol 5:2443–24447Google Scholar
  85. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramfrez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353CrossRefGoogle Scholar
  86. Mousavi SR, Rezaei M (2011) Nanotechnology in agriculture and food production. J Appl Environ Biol Sci 1:414–419Google Scholar
  87. Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Parishcha R, Ajayakumar PV, Alam M, Kumar R, Sastry M (2001a) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1:515–519CrossRefGoogle Scholar
  88. Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Ramani R, Parischa R, Ajayakumar PV, Alam M, Sastry M, Kumar R (2001b) Bioreduction of AuCl4 ions by the fungus Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew Chem Int Ed Engl 40:3585–3588CrossRefGoogle Scholar
  89. Mukherjee P, Ahmad A, Senapati S, Khan MI, Kumar R, Ramani R, Srinivas V, Sastri M, Ajay Kumar PV, Alam M, Parischa R (2002) Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. ChemBioChem 3:461–463CrossRefGoogle Scholar
  90. Mukherjee P, Roy M, Mandal BP, Dey GK, Mukherjee PK, Ghatak J, Tyagi AK, Kale SP (2008) Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum. Nanotechnology 19:075103CrossRefGoogle Scholar
  91. Müller F, Houben A, Barker PE, Xiao Y, Käs JA, Melzer M (2006) Quantum dots-a versatile tool in plant science? J Nanobiotechnol 4:5CrossRefGoogle Scholar
  92. Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Sakthi Kumar D (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163CrossRefGoogle Scholar
  93. Namasivayam SKR, Avimanyu (2011) Silver nanoparticle synthesis from Lecanicillium lecanii and evalutionary treatment on cotton fabrics by measuring their improved antibacterial activity with antibiotics against Staphylococcus aureus (ATCC 29213) and E. coli (ATCC 25922) strains. Int J Pharm Pharm Sci 3:190–195Google Scholar
  94. Narayanan KB, Sakthivel N (2010) Facile green synthesis of gold nanostructures by NADPH-dependent enzyme from the extract of Sclerotium rolfsii. Colloids Surf A 380:156–161CrossRefGoogle Scholar
  95. Navazi ZR, Pazouki M, Halek FS (2010) Investigation of culture conditions for biosynthesis of silver nanoparticles using Aspergillus fumigates. Iranian J Biotechnol 8:61Google Scholar
  96. Neethirajan S, Jayas DS (2011) Nanotechnology for the food and bioprocessing industries. Food Bioprocess Technol 4:39–47CrossRefGoogle Scholar
  97. Neethirajan S, Freund MS, Shafai C, Jayas DS, Thomson DJ (2009) Development of carbon dioxide sensor for agri-food industry. United States Provisional Patent no 2009-61/23891Google Scholar
  98. Nithya R, Ragunathan R (2009) Synthesis of silver nanoparticle using pleurotus Pleurotus sajor caju and its antimicrobial study. Dig J Nanomater Bios 4:623–629Google Scholar
  99. Owolade OF, Ogunleti DO, Adenekan MO (2008) Titanium dioxide affects disease development and yield of edible cowpea. Elect J Environ Agric Food Chem 7:942–2947Google Scholar
  100. Pandiarajan G, Govindaraj R, Kumar M, Ganesan V (2010) Biosynthesis of silver nanoparticles using silver nitrate through biotransformation. J Ecobiotechnol 2:13–18Google Scholar
  101. Patil SA (2009) Economics of agri poverty: nano-bio solutions. Indian Agricultural Research Institute, New Delhi, Indian. http://www.assocham.org/nanobio2007/
  102. Perea-De-Lugue A, Rubiales D (2009) Nanotechnology for parasitic plant control. Pest Manag Sci 65:540–545CrossRefGoogle Scholar
  103. Philip D (2009) Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract. Spectrochim Acta Part A 73:374–381CrossRefGoogle Scholar
  104. Pugazhenthiran N, Anandan S, Kathiravan G, Kannaian N, Prakash U, Crawford S, Kumar AA (2009) Microbial synthesis of silver nanoparticles by Bacillus sp. J Nanopart Res 11:1811–1815CrossRefGoogle Scholar
  105. Raheman F, Deshmukh S, Ingle A, Gade A, Rai M (2011) Silver nanoparticles: novel antimicrobial agent synthesized from an endophytic fungus Pestalotia sp. isolated from leaves of Syzygium cumini (L). Nano Biomed Eng 3:174–178Google Scholar
  106. Rai M, Ingle A (2012) Role of nanotechnology in agriculture with special reference to management of insect pests. Appl Microbiol Biotechnol 94:287–293CrossRefGoogle Scholar
  107. Rai M, Yadav A, Bridge P, Gade A (2009) Myconanotechnology: A new and emerging science. In: Rai MK, Bridge PD (eds) Applied mycology. CAB International, New York, pp 258–267CrossRefGoogle Scholar
  108. Rai M, Gade A, Yadav A (2011) Biogenic nanoparticles: an introduction to what they are, how they are synthesized and their applications. In: Rai M, Durán N (eds) Metal nanoparticles in microbiology. Springer, Berlin, pp 1–14CrossRefGoogle Scholar
  109. Rautaray D, Sanyal A, Adyanthaya SD, Ahmad A, Sastry M (2004) Biological synthesis of strontium carbonates crystals using the fungus Fusarium oxysporum. Langmuir 20:6827–6833CrossRefGoogle Scholar
  110. Ray S, Sarkar S, Kundu S (2011) Extracellular biosynthesis of silver nanoparticles using the mycorrhizal mushroom Tricholoma crassum (BERK.) Sacc.: its antimicrobial activity against pathogenic bacteria and fungus, including multidrug resistant plant and human bacteria. Dig J Nanomater Bios 6:1299Google Scholar
  111. Reguera G, Mccarthy KD, Mehta T, Nicol JS, Tuominen MT, Lovley DR (2005) Extracellular electron transfer via microbial nanowires. Nature 435:1098–1101CrossRefGoogle Scholar
  112. Rickman D, Luvall JC, Shaw J, Mask P, Kissel D, Sullivan D (2003) Precision agriculture: changing the face of farming. Available at: http://www.geotimes.org/nov03/featureagric.html#author. Accessed 23 Feb 2011
  113. Riddin T, Gericke M, Whiteley C (2006) Analysis of inter and extracellular formation of platinum nanoparticles by Fusarium oxysporum f. sp. lycopersici using response surface methodology. Nanotechnology 17:3482–3489CrossRefGoogle Scholar
  114. Roach S (2006) Instant, portable, simultaneous pathogen inspection. http://www.foodproductiondaily-usa.com/news/ng.asp
  115. Ruengruglikit C, Kim H, Miller RD, Huang Q (2004) Fabrication of nanoporous oligonucleotide microarrays for pathogen detection and identification. Polym Prepr 45:526Google Scholar
  116. Sadowski Z, Maliszewska GB, Polowczyk I, Kozlecki T (2008) Synthesis of silver nanoparticles using microorganisms. Mat Sci Poland 26:419–425Google Scholar
  117. Saha S, Sarkar J, Chattopadhyay D, Patra S, Chakraborty A, Acharya K (2010) Production of silver nanoparticles by a phytopathogenic fungus Bipolaris nodulosa and its antimicrobial activity. Dig J Nanomater Bios 5:887–895Google Scholar
  118. Saha S, Chattopadhyay D, Acharya K (2011) Preparation of silver nanoparticles by bio-reduction using Nigrospora oryzae culture filtrate and its antimicrobial activity. Dig J Nanomater Bios 6:1519–1528Google Scholar
  119. Salunkhe RB, Patil SV, Salunke BK, Patil CD, Sonawane AM (2011) Studies on silver accumulation and nanoparticle synthesis by Cochliobolus lunatus. Appl Biochem Biotechnol 165:221–234CrossRefGoogle Scholar
  120. Sanghi R, Verma P (2009) Biomimetic synthesis and characterization of protein capped silver nanoparticles. Bioresour Technol 100:501–504CrossRefGoogle Scholar
  121. Sanghi R, Verma P, Puri S (2011) Enzymatic formation of gold nanoparticles using Phanerochaete chrysosporium. Adv Chem Eng Sci 1:154–162CrossRefGoogle Scholar
  122. Saravanan M (2010) Biosynthesis and in vitro studies of silver bionanoparticles synthesized from Aspergillus species and its antimicrobial activity against multi drug resistant clinical isolates. World Acad Sci Eng Technol 68:728–731Google Scholar
  123. Saravanan M, Nanda A (2010) Extracellular synthesis of silver bionanoparticles from Aspergillus clavatus and its antimicrobial activity against MRSA and MRSE. Colloids Surf B 77:214–218CrossRefGoogle Scholar
  124. Saravanan P, Gopalan R, Chandrasekaran V (2008) Synthesis and characterization of nanomaterials. Def Sci J 58:504–516Google Scholar
  125. Sarkar J, Chattopadhyay D, Patra S, Deo SS, Sinha S, Ghosh M, Mukherjee A, Acharya K (2011a) Alternaria alternata mediated synthesis of protein capped silver nanoparticles and their genotoxic activity. Dig J Nanomater Bios 6:563–573Google Scholar
  126. Sarkar J, Dey P, Saha S, Acharya K (2011b) Mycosynthesis of selenium nanoparticles. IET Micro Nano Lett 6:599–602CrossRefGoogle Scholar
  127. Sastry M, Ahmad A, Khan MI, Kumar R (2003) Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr Sci 85:162–170Google Scholar
  128. Sastry KR, Rashmi HB, Rao NH (2011) Nanotechnology for enhancing food security in India. Food Policy 36:391–400CrossRefGoogle Scholar
  129. Sawle BD, Salimath B, Deshpande R, Bedre MD, Prabhakar KB, Venkataraman A (2008) Biosynthesis and stabilization of Au and Au–Ag alloy nanoparticles by fungus, Fusarium semitectum. Sci Technol Adv Mater 9:9035012Google Scholar
  130. Senapati S, Mandal D, Ahmad A, Khan MI, Sastry M, Kumar R (2004) Fungus mediated synthesis of silver nanoparticles: a novel biological approach. Indian J Phys A 78:101–105Google Scholar
  131. Shaligram NS, Bule M, Bhambure R, Singhal RS, Singh SK, Szakac SG, Pandey A (2009) Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain. Proc Biochem 44:939–943CrossRefGoogle Scholar
  132. Shankar SS, Ahmad A, Pasricha R, Sastry M (2003) Bioreduction of chloroaurate ions by Geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem 13:1822–1826CrossRefGoogle Scholar
  133. Shao L, Gao Y, Feng Y (2011) Semiconductor quantum dots for biomedical applications. Sensors 11:11736–11751CrossRefGoogle Scholar
  134. Sharon M, Choudhary AK, Kumar R (2010) Nanotechnology in agricultural diseases and food safety. J Phytol 2:83–92Google Scholar
  135. Singh P, Balaji R (2011) Biological synthesis and characterization of silver nanoparticles using the fungus Trichoderma harzianum. Asian J Exp Biol Sci 2:600–605Google Scholar
  136. Singh M, Manikandan S, Kumaraguru AK (2011) Nanoparticles: a new technology with wide applications. Res J Nanosci Nanotechnol 1:1–11CrossRefGoogle Scholar
  137. Spasova M, Manolova N, Naydenov M, Kuzmanova J (2011) Electrospun biohybrid materials for plant biocontrol containing chitosan and Trichoderma viride spores. J Bioact Compat Polym 26:48–55CrossRefGoogle Scholar
  138. Sugunan A, Melin P, Schnurer J, Hilborn JG, Dutta J (2007) Nutrition-driven assembly of colloidal nanoparticles: growing fungi assemble gold nanoparticles as microwires. Adv Mater 19:77–81CrossRefGoogle Scholar
  139. Sundaramoorthi C, Kalaivani M, Mathews DM, Palanisamy S, Kalaiselvan V, Rajasekaran A (2009) Biosynthesis of silver nanoparticles from Aspergillus niger and evaluation of its wound healing activity in experimental rat model. Int J PharmTech Res 1:1523–1529Google Scholar
  140. Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomed Nanotechnol Biol Med 6:257–262CrossRefGoogle Scholar
  141. Thirumurugan G, Shaheedha SM, Dhanaraju MD (2009) In vitro evaluation of anti-bacterial activity of silver nanoparticles synthesised by using Phytophthora infestans. Int J Chem Tech R 1:714–716Google Scholar
  142. Torney F, Trewyn BG, Lin VS-Y, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2:295–300CrossRefGoogle Scholar
  143. Uddin I, Adyanthaya S, Syed A, Selvaraj K, Ahmad A, Poddar P (2008) Structure and microbial synthesis of sub-10 nm Bi2O3 nanocrystals. J Nanosci Nanotechnol 8:3909–3913CrossRefGoogle Scholar
  144. Vahabi K, Ali Mansoori G, Karimi S (2011) Biosynthesis of silver nanoparticles by fungus Trichoderma reesei (a route for large-scale production of AgNPs). Insci J 1:65–79CrossRefGoogle Scholar
  145. Vaidyanathan R, Kalishwaralal K, Gopalram S, Gurunathan S (2009) Nanosilver—the burgeoning therapeutic molecule and its green synthesis. Biotechnol Adv 27:924–937CrossRefGoogle Scholar
  146. Verma VC, Kharwar RN, Gange AC (2010) Biosynthesis of antimicrobial silver nanoparticles by the endophytic fungus Aspergillus clavatus. Nanomedicine 5:33–40CrossRefGoogle Scholar
  147. Verma VC, Singh SK, Solanki R, Prakash S (2011) Biofabrication of anisotropic gold nanotriangles using extract of endophytic Aspergillus clavatus as a dual functional reductant and stabilizer. Nanoscale Res Lett 6:16CrossRefGoogle Scholar
  148. Vigneshwaran N, Kathe AA, Varadarajan PV, Nachane RP, Balasubramanya RH (2006) Biomimetics of silver nanoparticles by white rot fungus, Phaenerochaete chrysosporium. Colloids Surf B 53:55–59CrossRefGoogle Scholar
  149. Vigneshwaran N, Ashtaputre NM, Varadarajan PV, Nachane RP, Paralikar KM, Balasubramanya RH (2007) Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater Lett 61:1413–1418CrossRefGoogle Scholar
  150. Vo-Dinh T, Kasili PA, Wabuyele M (2006) Nanoprobes and nanobiosensors for monitoring and imaging individual living cells. Nanomed Nanotechnol Biol Med 2:22–30CrossRefGoogle Scholar
  151. Yang L, Watts DJ (2005) Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 158:122–132CrossRefGoogle Scholar
  152. Yang F-L, Li X-G, Zhu F, Lei C-L (2009) Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J Agric Food Chem 57:10156–10162CrossRefGoogle Scholar
  153. Yoo SM, Kang T, Kang H, Lee H, Kang M, Lee SY, Kim B (2011) Combining a nanowire SERRS sensor and a target recycling reaction for ultrasensitive and multiplex identification of pathogenic fungi. Small 7:3371–3376CrossRefGoogle Scholar
  154. Youtie Y, Shapira P, Porter AL (2008) Nanotechnology publications and citations by leading countries and blocs. J Nanopart Res 10:981–986CrossRefGoogle Scholar
  155. Zhang X, He X, Wang K, Wang Y, Li H, Tan W (2009) Biosynthesis of size-controlled gold nanoparticles using fungus, Penicillium sp. J Nanosci Nanotechnol 9:5738–5744CrossRefGoogle Scholar
  156. Zhang X, Yan S, Tyagi RD, Surampalli RY (2011) Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates. Chemosphere 82:489–494CrossRefGoogle Scholar
  157. Zhao X, Hilliard LR, Mechrey SJ, Wang Y, Bagwe RP, Jin S, Tan W (2004) A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles. Proc Nat Acad Sci 101:15027–15032CrossRefGoogle Scholar
  158. Zhu Z-J, Yeh Y-C, Tang R, Yan B, Tamayo J, Vachet RW, Rotello VM (2011) Stability of quantum dots in live cells. Nat Chem 3:963–968CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Prem Lal Kashyap
    • 1
    Email author
  • Sudheer Kumar
    • 1
  • Alok Kumar Srivastava
    • 1
  • Arun Kumar Sharma
    • 1
  1. 1.National Bureau of Agriculturally Important Microorganisms (NBAIM)MauIndia

Personalised recommendations