Characterization of Lactobacillus brevis L62 strain, highly tolerant to copper ions

Abstract

Lactic acid bacteria (LAB) as starter culture in food industry must be suitable for large-scale industrial production and possess the ability to survive in unfavorable processes and storage conditions. Approaches taken to address these problems include the selection of stress-resistant strains. In food industry, LAB are often exposed to metal ions induced stress. The interactions between LAB and metal ions are very poorly investigated. Because of that, the influence of non-toxic, toxic and antioxidant metal ions (Zn, Cu, and Mn) on growth, acid production, metal ions binding capacity of wild and adapted species of Leuconostoc mesenteroides L3, Lactobacillus brevis L62 and Lactobacillus plantarum L73 were investigated. The proteomic approach was applied to clarify how the LAB cells, especially the adapted ones, protect themselves and tolerate high concentrations of toxic metal ions. Results have shown that Zn and Mn addition into MRS medium in the investigated concentrations did not have effect on the bacterial growth and acid production, while copper ions were highly toxic, especially in static conditions. Leuc. mesenteroides L3 was the most efficient in Zn binding processes among the chosen LAB species, while L. plantarum L73 accumulated the highest concentration of Mn. L. brevis L62 was the most copper resistant species. Adaptation had a positive effect on growth and acid production of all species in the presence of copper. However, the adapted species incorporated less metal ions than the wild species. The exception was adapted L. brevis L62 that accumulated high concentration of copper ions in static conditions. The obtained results showed that L. brevis L62 is highly tolerant to copper ions, which allows its use as starter culture in fermentative processes in media with high concentration of copper ions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Alzate A, Cañas B, Pérez-Munguía S, Hernández-Mendoza H, Pérez-Conde C, Gutiérrez AM, Cámara C (2007) Evaluation of the inorganic selenium biotransformation in selenium-enriched yogurt by HPLC-ICP-MS. J Agric Food Chem 55:9776–9783

    Article  CAS  Google Scholar 

  2. Alzate A, Fernández-Fernández A, Pérez-Conde C, Gutiérrez AM, Cámara C (2008) Comparison of biotransformation of inorganic selenium by Lactobacillus and Saccharomyces in lactic fermentation process of yogurt and kerfir. J Agric Food Chem 56:8728–8736

    Article  CAS  Google Scholar 

  3. Archibald FS, Fridovich I (1981) Manganese and defenses against oxygen toxicity in L. plantarum. J Bacteriol 145:442–451

    CAS  Google Scholar 

  4. Bolotin A, Wincker P, Mauger S, Jaillon O, Malarme K, Weissenbach J, Ehrlich SD, Sorokin A (2001) The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res 11:731–753

    Article  CAS  Google Scholar 

  5. Champomier-Vergès M-C, Maguin E, Mistou MY, Angladec P, Chichd JF (2002) Lactic acid bacteria and proteomics: current knowledge and perspectives. J Chromatogr 771:329–342

    Article  Google Scholar 

  6. De Angelis M, Di Cagno R, Huet C, Crecchio C, Fox PF, Gobetti M (2004) Heat shock response in Lactobacillus plantarum. Appl Environ Microbiol 70:1336–1346

    Article  Google Scholar 

  7. Desmond C, Stanton C, Gitzgerald GF, Collins K, Ross RP (2001) Environmental adaptation of probiotic lactobacilli towards improved performance during spray drying. Int Dairy J 11:801–808

    Article  Google Scholar 

  8. Halttunen T, Salminen S, Tahvonen R (2007a) Rapid removal of lead and cadmium from water by specific lactic acid bacteria. Int J Food Microbiol 114:30–35

    Article  CAS  Google Scholar 

  9. Halttunen T, Finell M, Salminen S (2007b) Arsenic removal by native and chemically modified lactic acid bacteria. Int J Food Microbiol 120:173–178

    Article  CAS  Google Scholar 

  10. Halttunen T, Salminen S, Meriluoto J, Tahvonen R (2008a) Reversible surface binding of cadmium and lead by lactic acid and bifidobacteria. Int J Food Microbiol 125:170–175

    Article  Google Scholar 

  11. Halttunen T, Collado MC, El-Nezami H, Meriluoto J, Salminen S (2008b) Combining strains of lactic acid bacteria may reduce their toxin and heavy metal removal efficiency from aqueous solution. Lett Appl Microbiol 46:160–165

    Article  CAS  Google Scholar 

  12. Hao B, Gong W, Rajagopalan PT, Zhou Y, Pei D, Chan MK (1999) Structural basis for the design of antibiotics targeting peptide deformylase. Biochemistry 38:4712–4719

    Article  CAS  Google Scholar 

  13. Ibrahim F, Halttunen T, Tahvonen R, Salminen S (2006) Probiotic bacteria as potential detoxification tools: assessing their heavy metal binding isotherms. Can J Microbiol 52:877–885

    Article  CAS  Google Scholar 

  14. Johansson E, Fanø M, Bynck JH, Neuhard J, Larsen S, Sigurskjold BW, Christensen U, Willemoës M (2005) Structures of dCTP deaminase from E. coli with bound substrate and product: reaction mechanism and determinants of mono- and bifunctionality for a family of enzymes. J Biol Chem 280:3051–3059

    Article  CAS  Google Scholar 

  15. Kaneko T, Takahashi M, Suzuki H (1990) Acetoin fermentation by citrate-positive L. lactis subsp. lactis 3022 grown aerobically in the presence of hemin or Cu. Appl Environ Microbiol 56:2644–2649

    CAS  Google Scholar 

  16. Lamberti C, Mangiapane E, Pessione A, Mazzoli R, Giunta C, Pessione E (2011) Proteomic characterization of a selenium-metabolizing probiotic Lactobacillus reuteri Lb2 BM for nutraceutical applications. Proteomics 11:2212–2221

    Article  CAS  Google Scholar 

  17. Lefebvre D, Gabriel V, Vayssier Y, Fontagne-Faucher C (2002) Simultaneous hplc determination of sugars, organic acid and ethanol in sourdough process. Lebeusm Wiss Technol 35:407–414

    Article  CAS  Google Scholar 

  18. Llull D, Son O, Blanié S, Briffotaux J, Morello E, Rogniaux H, Danot O, Poquet I (2011) L. lactis ZitR is a zinc-responsive repressor active in the presence of low, nontoxic zinc concentrations in vivo. J Bacteriol 193:1919–1929

    Article  CAS  Google Scholar 

  19. Lowther WT, Matthews BW (2002) Metalloaminopeptidases: common functional themes in disparate structural surroundings. Chem Rev 102:4581–4608

    Article  CAS  Google Scholar 

  20. Magnani D, Barre O, Gerber SD, Solioz M (2008) Characterization of the CopR Regulon of L. lactis IL1403. J Bacteriol 190:536–545

    Article  CAS  Google Scholar 

  21. Miyoshi A, Rochat T, Gratadoux JJ, Le Loir Y, Oliveira SC, Langella P, Azevedo V (2003) Oxidative stress in L. lactis. Genet Mol Res 2:348–359

    CAS  Google Scholar 

  22. Mrvčić J, Stanzer D, Stehlik-Tomas V, Skevin D, Grba S (2007) Optimization of bioprocess for production of copper-enriched biomass of industrially important microorganism Saccharomyces cerevisiae. J Biosci Bioeng 103:331–337

    Article  Google Scholar 

  23. Mrvčić J, Stehlik-Tomas V, Grba S (2008) Incorporation of copper ions by yeast Kluyveromyces marxianus during cultivation on whey. Acta Aliment 37:133–139

    Article  Google Scholar 

  24. Mrvčić J, Prebeg T, Barišić L, Stanzer D, Bačun-Družina V, Stehlik-Tomas V (2009a) Zinc binding by lactic acid bacteria. Food Technol Biotechnol 47:381–388

    Google Scholar 

  25. Mrvčić J, Stanzer D, Bačun-Družina V, Stehlik-Tomas V (2009b) Copper binding by lactic acid bacteria (LAB). Biosci Microflora 28:1–6

    Google Scholar 

  26. Mrvčić J, Šolić E, Stanzer D, Stehlik-Tomas V (2012) Interaction of lactic acid bacteria with metal ions: opportunities for improving food safety and quality. World J Microbiol Biotechnol 28:2771–2782

    Article  Google Scholar 

  27. Peñas E, Martinez-Villaluenga C, Frias J, Sánchez-Martínez MJ, Pérez-Corona MT, Madrid Y, Cámara C, Vidal-Valverde C (2012) Se improves indole glucosinolate hydrolysis products content, Se-methylselenocysteine content, antioxidant capacity and potential anti-inflammatory properties of sauerkraut. Food Chem 132:907–914

    Article  Google Scholar 

  28. Raghunathan S, Kozlov AG, Lohman TM, Waksman G (2000) Structure of the DNA binding domain of E. coli SSB bound to ssDNA. Nat Struct Biol 7:648–652

    Article  CAS  Google Scholar 

  29. Rodriguez LM, Alatossava T (2008) Effects of copper supplement on growth and viability of strains used as starters and adjunct cultures for Emmental cheese manufacture. J Appl Microbiol 105:1098–1106

    Article  CAS  Google Scholar 

  30. Rollini M, Musatti A, Erba D, Benedetti A, Girardo F, Manzoni M (2011) Process for obtaining copper-enriched cells of S. cerevisiae. Process Biochem 46:1417–1422

    Article  CAS  Google Scholar 

  31. Schut S, Zauner S, Hampel G, König H, Claus H (2011) Biosorption of copper by wine-relevant lactobacilli. Int J Food Microbiol 145:126–131

    Article  CAS  Google Scholar 

  32. Solioz M, Abicht HK, Mermod M, Mancini S (2010) Response of Gram-positive bacteria to copper stress. J Biol Inorg Chem 15:3–14

    Article  CAS  Google Scholar 

  33. Sugimoto S, Al-Mahin A, Sonomoto K (2008) Molecular chaperones in lactic acid bacteria: physiological consequences and biochemical properties. J Biosci Bioeng 106:324–336

    Article  CAS  Google Scholar 

  34. Van de Guchte M, Serror P, Chervaux C, Smokvina T, Stanislav D, Maguin E, Maguin E (2002) Stress responses in lactic acid bacteria. Antonie Leeuwenhoek 82:187–216

    Article  Google Scholar 

  35. Xia KS, Chen L, Liang JQ (2007) Enriched selenium and its effects on growth and biochemical composition in L. bulgaricus. J Agric Food Chem 55:2413–2417

    Article  CAS  Google Scholar 

  36. Zhang B, Zhou K, Zhang J, Chen Q, Liu G, Shang N, Qin W, Li P, Lin F (2009) Accumulation and species distribution of selenium in Se-enriched bacterial cells of the B. animalis 01. Food Chem 115:727–734

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been funded in part with National funds from a grant from the Ministry of Science, Education and Sports of the Republic of Croatia (058-0583444-3483, 058-0583444-3466 and 098-0000000-3454).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jasna Mrvčić.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mrvčić, J., Butorac, A., Šolić, E. et al. Characterization of Lactobacillus brevis L62 strain, highly tolerant to copper ions. World J Microbiol Biotechnol 29, 75–85 (2013). https://doi.org/10.1007/s11274-012-1160-9

Download citation

Keywords

  • Metal ions
  • Leuconostoc mesenteroides
  • Lactobacillus brevis
  • Lactobacillus plantarum
  • Proteomics