Skip to main content
Log in

Characterization of microbial diversity and community in water flooding oil reservoirs in China

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The diversity and distribution of bacterial and archaeal communities in four different water flooding oil reservoirs with different geological properties were investigated using 16S rDNA clone library construction method. Canonical correspondence analysis was used to analyze microbial community clustering and the correlation with environmental factors. The results indicated that the diversity and abundance in the bacterial communities were significantly higher than the archaeal communities, while both of them had high similarity within the communities respectively. Phylogenetic analysis showed that of compositions of bacterial communities were distinctly different both at phylum and genus level. Proteobacteria dominated in each bacterial community, ranging from 61.35 to 75.83 %, in which α-proteobacteria and γ-proteobacteria were the main groups. In comparison to bacterial communities, the compositions of archaeal communities were similar at phylum level, while varied at genus level, and the dominant population was Methanomicrobia, ranging from 65.91 to 92.74 % in the single oil reservoir. The factor that most significantly influenced the microbial communities in these reservoirs was found to be temperature. Other environmental factors also influenced the microbial communities but not significantly. It is therefore assumed that microbial communities are formed by an accumulated effect of several factors. These results are essential for understanding ecological environment of the water flooding oil reservoirs and providing scientific guidance to the performance of MEOR technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bastin E (1926) Microorganisms in oil fields. Science 63:21–24

    Article  CAS  Google Scholar 

  • Bernhard S (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol R 61:262–280

    Google Scholar 

  • Birkeland NK (2004) The microbial diversity of deep subsurface oil reservoirs. In: Vazquez-Duhalt R, Quintero-Ra-mirez R (eds) Petroleum biotechnology: developments and perspectives. Elsevier B.V, Amsterdam, pp 385–403

    Chapter  Google Scholar 

  • Boll MG, Fuchs G, Heider J (2002) Anaerobic oxidation of aromatic compounds and hydrocarbons. Curr Opin Chem Biol 6:604–611

    Article  CAS  Google Scholar 

  • Bonch-Osmolovskaya EA, Miroshnichenko ML, Lebedinsky AV, Chernyh NA, Nazina TN, Ivoilov VS, Belyaev SS, Boulygina ES, Lysov YP, Perov AN, Mirzabekov AD, Hippe H, Stackebrandt E, L’Haridon S, Jeanthon C (2003) Radioisotopic, culture-based, and oligonucleotide microchip analyses of thermophilic microbial communities in a continental hightemperature petroleum reservoir. Appl Environ Microbiol 69:6143–6151

    Article  CAS  Google Scholar 

  • Borsodi AK, Micsinai A, Kovács G, Tóth E, Schumann P, Kovács AL, Böddi B, Márialigeti K (2003) Pannonibacter phragmitetus gen. nov., sp. nov., a novel alkalitolerant bacterium isolated from decomposing reed rhizomes in a Hungarian soda lake. Int J Syst Evol Microbiol 53:555–561

    Article  CAS  Google Scholar 

  • Brown MV, Bowman JP (2001) A molecular phylogenetic survey of sea-ice microbial communities (SIMCO). FEMS Mcirobiol Ecol 35:267–275

    Article  CAS  Google Scholar 

  • Dahle H, Garshol F, Madsen M, Birkeland NK (2008) Microbial community structure analysis of produced water from a high-temperature North Sea oil-field. Antonie Van Leeuwenhoek 93:37–49

    Article  Google Scholar 

  • Dang HY, Zhang XX, Sun J, Li TG, Zhang ZN, Yang GP (2008) Diversity and spatial distribution of sediment ammonia-oxidizing crenarchaeota in response to estuarine and environmental gradients in the Changjiang Estuary and East China Sea. Microbiology 154:2084–2095

    Article  CAS  Google Scholar 

  • Gieg LM, Duncan KE, Suflita JM (2008) Bioenergy production via microbial conversion of residual oil to natural gas. Appl Environ Microbiol 74:3022–3029

    Article  CAS  Google Scholar 

  • Grabowsk A, Nercessian O, Fayolle F, Blanchet D, Jeanthon C (2005) Microbial diversity in production waters of a low-temperature biodegraded oil reservoir. FEMS Mcirobiol Ecol 54:427–443

    Article  Google Scholar 

  • Gray CT, Gest H (1965) Biological formation of molecular hydrogen. Science 148:186–192

    Article  CAS  Google Scholar 

  • Gray JP, Herwig RP (1996) Phylogenetic analysis of the bacterial communities in marine sediments. Appl Environ Microbiol 62:4049–4059

    CAS  Google Scholar 

  • Hallmann C, Schwark L, Grice K (2008) Community dynamics of anaerobic bacteria in deep petroleum reservoirs. Nat Geosci 1:588–591

    Article  CAS  Google Scholar 

  • Hubert CRJ, Oldenburg TBP, Fustic M, Gray ND, Larter SR, Penn K, Rowan AK, Seshadri R, Sherry A, Swainsbury R, Voordouw G, Voordouw JK, Head IM (2012) Massive dominance of Epsilonproteobacteria in formation waters from a Canadian oil sands reservoir containing severely biodegraded oil. Environ Microbiol 14:387–404

    Google Scholar 

  • Jackson PE (2000) Ion Chromatography in Environmental Analysis. In: Meyers RA (ed) Encyclopedia of analytical chemistry. Wiley, Chichester, pp 2779–2801

    Google Scholar 

  • Jiang CQ, Larter SR, Noke KJ, Snowdon LR (2008) TLC–FID (Latroscan) analysis of heavy oil and tar sand samples. Org Geochem 39:1210–1214

    Article  CAS  Google Scholar 

  • Jones DM, Head IM, Gray ND, Adams JJ, Rowan AK, Aitken CM, Bennett B, Huang H, Brown A, Bowler BFJ, Oldenburg T, Erdmann M, Larter SR (2008) Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs. Nature 451:176–180

    Article  CAS  Google Scholar 

  • Kaye JZ, Baross JA (2004) Synchronous effects of temperature, hydrostatic pressure, and salinity on growth, phospholipid profiles, and protein patterns of four Halomonas species isolated from deep-sea hydrothermal-vent and sea surface environments. Appl Environ Microbiol 70:6220–6229

    Article  CAS  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  Google Scholar 

  • Lazar I, Petrisor IG, Yen TF (2007) Microbial enhanced oil recovery (MEOR). Petrol Sci Technol 25:1353–1366

    Article  CAS  Google Scholar 

  • Li H, Yang SZ, Mu BZ (2007a) Phylogenetic diversity of the archaeal community in a continental high-temperature, water-flooded petroleum reservoir. Curr Microbiol 55:382–388

    Article  CAS  Google Scholar 

  • Li H, Yang SZ, Mu BZ, Rong ZF, Zhang J (2007b) Molecular phylogenetic diversity of the microbial community associated with a high-temperature petroleum reservoir at an offshore oilfield. FEMS Mcirobiol Ecol 60:74–84

    Article  CAS  Google Scholar 

  • Li H, Chen S, Mu BZ, Gu JD (2010) Molecular detection of anaerobic ammonium-oxidizing (anammox) bacteria in high temperature petroleum reservoirs. Microb Ecol 60:771–783

    Article  CAS  Google Scholar 

  • Magot M, Ravot G, Campaignolle X, Ollivier B, Patel BK, Fardeau ML, Thomas P, Crolet JL, Garcia JL (1997) Dethiosulfovibrio peptidovorans gen. nov., sp. nov., a new anaerobic, slightly halophilic, thiosulfate-reducing bacterium from corroding offshore oil wells. Int J Syst Bacteriol 47:818–824

    Article  CAS  Google Scholar 

  • Magot M, Ollivier B, Patel BK (2000) Microbiology of petroleum reservoirs. Antonie Van Leeuwenhoek 77:103–116

    Article  CAS  Google Scholar 

  • Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial population by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    CAS  Google Scholar 

  • Nazina TN, Ivanova AE, Borzenkov IA, Belyaev SS, Ivanov MV (1995) Occurrence and geochemical activity of microorganisms in high-temperature water-flooded oil fields of Kazakhstan and Western Siberia. Geomicrobiol J 13:181–192

    Article  CAS  Google Scholar 

  • Nazina TN, Grigor’ian AA, Sue KF, Sokolova DSh, Novikova EV, Turova TP, Poltaraus AB, Beliaev SS, Ivanov MV (2002) Phylogenetic diversity of aerobic saprotrophic bacteria isolated from the daqing oil field. Microbiology 71:103–110

    Article  CAS  Google Scholar 

  • Nunoura T, Hirayama H, Takami H, Oida H, Nishi S, Shimamura S, Suzuki Y, Inagaki F, Takai K, Nealson KH, Horikoshi K (2005) Genetic and functional properties of uncultivated thermophilic crenarchaeotes from a subsurface gold mine as revealed by analysis of genome fragments. Environ Microbiol 7:1967–1984

    Article  CAS  Google Scholar 

  • Onstott TC, Hinton SM, Silver BJ, King HE Jr (2010) Coupling hydrocarbon degradation to anaerobic respiration and mineral diagenesis: theoretical constraints. Geobiology 8:69–88

    Article  CAS  Google Scholar 

  • Orphan VJ, Taylor LT, Hafenbradl D, Delong EF (2000) Culture-dependent and culture-independent characterization of microbial assemblages associated with high-temperature petroleum reservoirs. Appl Environ Microbiol 66:700–711

    Article  CAS  Google Scholar 

  • Parkes RJ, Wellsbury P, Mather ID, Cobb SJ, Cragg BA, Hornibrook ERC, Horsfield B (2007) Temperature activation of organic matter and minerals during burial has the potential to sustain the deep biosphere over geological timescales. Org Geochem 38:845–852

    Article  CAS  Google Scholar 

  • Ravot G, Magot M, Fardeau ML, Patel BK, Prensier G, Egan A, Garcia JL, Ollivier B (1995) Thermotoga elfii sp. nov., a novel thermophilic bacterium from an African oil-producing well. Int J Syst Bacteriol 45:308–314

    Article  CAS  Google Scholar 

  • Ren HY, Zhang XJ, Song ZY, Rupert W, Gao GJ, Guo SX, Zhao LP (2011) Comparison of microbial community compositions of injection and production well samples in a long-term water-flooded petroleum reservoir. PLoS One 6:e23258

    Article  CAS  Google Scholar 

  • Reysenbach AL, Ehringer M, Hershberger K (2000) Microbial diversity at 83 degrees C in Calcite Springs, Yellowstone National Park: another environment where the Aquificales and “Korarchaeota” coexist. Extremophiles 4:61–67

    CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  Google Scholar 

  • Salinas MB, Fardeau ML, Cayol JL, Casalot L, Patel BK, Thomas P, Garcia JL, Ollivier B (2004) Petrobacter succinatimandens gen. nov., sp. nov., a moderately thermophilic, nitrate-reducing bacterium isolated from an Australian oil well. Int J Syst Evol Microbiol 54:645–664

    Article  CAS  Google Scholar 

  • Sen R (2008) Biotechnology in petroleum recovery: the microbial EOR. Prog Energy Combust Sci 34:714–724

    Article  CAS  Google Scholar 

  • Smith DR, Doucette-Stamm LA, Deloughery C, Lee H, Dubois J, Aldredge T, Bashirzadeh R, Blakely D, Cook R, Gilbert K, Harrison D, Hoang L, Keagle P, Lumm W, Pothier B, Qiu D, Spadafora R, Vicaire R, Wang Y, Wierzbowski J, Gibson R, Jiwani N, Caruso A, Bush D, Reeve JN (1997) Complete genome sequence of Methanobacterium thermoautotrophicum deltaH: functional analysis and comparative genomics. J Bacteriol 179:7135–7155

    CAS  Google Scholar 

  • Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849

    Article  CAS  Google Scholar 

  • ter Braak CJF, Verdonschot PFM (1995) Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquat Sci 57:255–289

    Article  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  Google Scholar 

  • Varela MM, van Aken HM, Sintes E, Reinthaler T, Herndl GJ (2011) Contribution of Crenarchaeota and Bacteria to autotrophy in the North Atlantic interior. Environ Microbiol 13:1524–1533

    Article  Google Scholar 

  • Voordouw G (2011) Production-related petroleum microbiology: progress and prospects. Curr Opin Biotechnol 22:401–405

    Article  CAS  Google Scholar 

  • Wang J, Ma T, Zhao LX, Lv JH, Li GQ, Zhang H, Zhao B, Liang FL, Liu RL (2008) Monitoring exogenous and indigenous bacteria by PCR-DGGE technology during the process of microbial enhanced oil recovery. J Ind Microbiol Biotechnol 35:619–628

    Article  CAS  Google Scholar 

  • Widdel F, Rabus R (2001) Anaerobic biodegradation of saturated and aromatic hydrocarbons. Curr Opin Biotechnol 12:259–276

    Article  CAS  Google Scholar 

  • Yamane K, Hattori Y, Ohtagaki H, Fujiwara K (2011) Microbial diversity with dominance of 16S rRNA gene sequences with high GC contents at 74 and 98 °C subsurface crude oil deposits in Japan. FEMS Microbiol Ecol 76:220–235

    Article  CAS  Google Scholar 

  • Yannarell AC, Triplett EW (2005) Geographic and environmental sources of variation in lake bacterial community composition. Appl Environ Microbiol 71:227–239

    Article  CAS  Google Scholar 

  • Youssef N, Simpson DR, Duncan KE, McInerney MJ, Folmsbee M, Fincher T, Knapp RM (2007) In situ biosurfactant production by Bacillus strains injected into a limestone petroleum reservoir. Appl Environ Microbiol 73:1239–1247

    Article  CAS  Google Scholar 

  • Youssef N, Elshahed MS, Mclnerney MJ (2009) Microbial process in oil fields: culprits, problems, and opportunities. Adv Appl Microbiol 66:141–251

    Article  CAS  Google Scholar 

  • Zengler K, Richnow HH, Rossello-Mora R, Michaelis W, Widdel F (1999) Methane formation from long-chain alkanes by anaerobic microorganisms. Nature 401:266–269

    Article  CAS  Google Scholar 

  • Zhang F, She YH, Ma SS, Hu JM, Banat IM, Hou DJ (2010) Response of microbial community structure to microbial plugging in a mesothermic petroleum reservoir in China. Appl Microbiol Biotechnol 88:1413–1422

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank technicians in Daqing oil field, Karamay oil field and Huabei oil field for assistance in sample collection. This work was supported by National High Technology Research and Development Program of China (2009AA063502) and National Natural Science Foundation of China (50804024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, L., Ma, T., Gao, M. et al. Characterization of microbial diversity and community in water flooding oil reservoirs in China. World J Microbiol Biotechnol 28, 3039–3052 (2012). https://doi.org/10.1007/s11274-012-1114-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-012-1114-2

Keywords

Navigation