Skip to main content
Log in

Immunodetection of the recombinant GroEL by the Nanobody NbBruc02

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Brucella has a great impact on health and economy in Syria, thus much effort is being placed on the development of diagnostics and vaccines. In this context, a wide Nanobody “immune” library was previously established, from which several Brucella-specific binders were isolated. One of these camel genetically engineered heavy-chain antibody fragments was referred to as NbBruc02. The precise antigen of NbBruc02 was presumed to be, according to proteomic approaches, the Brucella heat shock protein of 60 kDa (HSP-60). HSP-60, or alternatively named GroEL, is an interesting Brucella immunodominant antigen with important roles in the parasite life cycle, mainly adhesion and penetration during the infection of macrophages. In the present work, the capacity of NbBruc02 to filtrate the native GroEL from Brucella total extract was tested by immunochromatography approach. The interaction between NbBruc02 and its antigen was further confirmed using recombinant GroEL from Brucella. Interestingly, NbBruc02 was able to immunodetect the native as well as the denatured forms of the rGroEL in ELISA and immunoblotting, respectively. In agreement with previously reported data, NbBruc02 was able only to detect the denatured Yersinia rGroEL. Using surface plasmon resonance (SPR) biosensor, NbBruc02 showed a strong interaction, with nanomolar affinity (K D = ~10−8 M), with the native rGroEL of Brucella and not of Yersinia. Because the casual conformational changes in the GroEL 3D structure make the base of its function, NbBruc02 by its ability to recognize a “conformational epitope,” could open wide perspectives to study the role of GroEL in Brucella physiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AEC:

3-amino-9-ethylcarbazole

FPLC:

Fast protein liquid chromatography

HCAb:

Heavy-chain antibody

HSP-60:

Heat shock protein of 60 kDa

IPTG:

Isopropyl β-d-thiogalactoside

LPS:

Lipopolysaccharide

Ni-NTA:

Nickel-charged nitrilotriacetic acid

SPR:

Surface plasmon resonance

TMB:

3,3′,5,5′-tetramethylbenzidine

References

  • Abbady AQ, Al-Mariri A, Zarkawi M, Al-Assad A, Muyldermans S (2011) Evaluation of a nanobody phage display library constructed from a Brucella-immunised camel. Vet Immunol Immunopathol 142(1–2):49–56

    Article  CAS  Google Scholar 

  • Abbady AQ, Al-Daoude A, Al-Mariri A, Zarkawi M, Muyldermans S (2012) Chaperonin GroEL a Brucella immunodominant antigen identified using Nanobody and MALDI-TOF-MS technologies. Vet Immunol Immunopathol 146(3–4):254–263

    Article  CAS  Google Scholar 

  • Al Dahouk S, Nockler K, Scholz HC, Tomaso H, Bogumil R, Neubauer H (2006) Immunoproteomic characterization of Brucella abortus 1119–3 preparations used for the serodiagnosis of Brucella infections. J Immunol Methods 309(1–2):34–47

    Article  CAS  Google Scholar 

  • Alonso-Urmeneta B, Marin C, Aragon V, Blasco JM, Diaz R, Moriyon I (1998) Evaluation of lipopolysaccharides and polysaccharides of different epitopic structures in the indirect enzyme-linked immunosorbent assay for diagnosis of brucellosis in small ruminants and cattle. Clin Diagn Lab Immunol 5(6):749–754

    CAS  Google Scholar 

  • Amirmozafari N, Ghazi F, Mostafazadeh A, Mostafaie A, Rajabnia R (2008) Comparison of heat shock response in Brucella abortus and Brucella melitensis. Pak J Biol Sci 11(2):188–194

    Article  CAS  Google Scholar 

  • Arbabi Ghahroudi M, Desmyter A, Wyns L, Hamers R, Muyldermans S (1997) Selection and identification of single domain antibody fragments from camel heavy-chain antibodies. FEBS Lett 414(3):521–526

    Article  CAS  Google Scholar 

  • Bae JE, Toth TE (2000) Cloning and kinetics of expression of Brucella abortus heat shock proteins by baculovirus recombinants. Vet Microbiol 75(2):199–204

    Article  CAS  Google Scholar 

  • Bae JE, Schurig GG, Toth TE (2002) Mice immune responses to Brucella abortus heat shock proteins. Use of baculovirus recombinant-expressing whole insect cells, purified Brucella abortus recombinant proteins, and a vaccinia virus recombinant as immunogens. Vet Microbiol 88(2):189–202

    Article  CAS  Google Scholar 

  • Baloglu S, Toth TE, Schurig GG, Sriranganathan N, Boyle SM (2000) Humoral immune response of BALB/c mice to a vaccinia virus recombinant expressing Brucella abortus GroEL does not correlate with protection against a B. abortus challenge. Vet Microbiol 76(2):193–199

    Article  CAS  Google Scholar 

  • Basharov MA (2003) Protein folding. J Cell Mol Med 7(3):223–237

    Article  CAS  Google Scholar 

  • Blanco-Toribio A, Muyldermans S, Frankel G, Fernandez LA (2010) Direct injection of functional single-domain antibodies from E. coli into human cells. PLoS One 5(12):e15227

    Article  Google Scholar 

  • Castaneda-Roldan EI, Ouahrani-Bettache S, Saldana Z, Avelino F, Rendon MA, Dornand J, Giron JA (2006) Characterization of SP41, a surface protein of Brucella associated with adherence and invasion of host epithelial cells. Cell Microbiol 8(12):1877–1887

    Article  CAS  Google Scholar 

  • Chuang VT, Maruyama T, Otagiri M (2009) Updates on contemporary protein binding techniques. Drug Metab Pharmacokinet 24(4):358–364

    Article  CAS  Google Scholar 

  • Connolly JP, Comerci D, Alefantis TG, Walz A, Quan M, Chafin R, Grewal P, Mujer CV, Ugalde RA, DelVecchio VG (2006) Proteomic analysis of Brucella abortus cell envelope and identification of immunogenic candidate proteins for vaccine development. Proteomics 6(13):3767–3780

    Article  CAS  Google Scholar 

  • Habicht G, Haupt C, Friedrich RP, Hortschansky P, Sachse C, Meinhardt J, Wieligmann K, Gellermann GP, Brodhun M, Gotz J, Halbhuber KJ, Rocken C, Horn U, Fandrich M (2007) Directed selection of a conformational antibody domain that prevents mature amyloid fibril formation by stabilizing Abeta protofibrils. Proc Natl Acad Sci U S A 104(49):19232–19237

    Article  CAS  Google Scholar 

  • Hendrickx ML, De Winter A, Buelens K, Compernolle G, Hassanzadeh-Ghassabeh G, Muyldermans S, Gils A, Declerck PJ (2011) TAFIa inhibiting nanobodies as profibrinolytic tools and discovery of a new TAFIa conformation. J Thromb Haemost 9(11):2268–2277

    Article  CAS  Google Scholar 

  • Kaufmann SH, Schoel B, van Embden JD, Koga T, Wand-Wurttenberger A, Munk ME, Steinhoff U (1991) Heat-shock protein 60: implications for pathogenesis of and protection against bacterial infections. Immunol Rev 121:67–90

    Article  CAS  Google Scholar 

  • Kirchhofer A, Helma J, Schmidthals K, Frauer C, Cui S, Karcher A, Pellis M, Muyldermans S, Casas-Delucchi CS, Cardoso MC, Leonhardt H, Hopfner KP, Rothbauer U (2010) Modulation of protein properties in living cells using nanobodies. Nat Struct Mol Biol 17(1):133–138

    Article  CAS  Google Scholar 

  • Kuroda K, Kato M, Mima J, Ueda M (2006) Systems for the detection and analysis of protein–protein interactions. Appl Microbiol Biotechnol 71(2):127–136

    Article  CAS  Google Scholar 

  • Lin J, Ficht TA (1995) Protein synthesis in Brucella abortus induced during macrophage infection. Infect Immun 63(4):1409–1414

    CAS  Google Scholar 

  • Lin Z, Rye HS (2006) GroEL-mediated protein folding: making the impossible, possible. Crit Rev Biochem Mol Biol 41(4):211–239

    Article  CAS  Google Scholar 

  • Lin J, Adams LG, Ficht TA (1992) Characterization of the heat shock response in Brucella abortus and isolation of the genes encoding the GroE heat shock proteins. Infect Immun 60(6):2425–2431

    CAS  Google Scholar 

  • Lund PA (2009) Multiple chaperonins in bacteria—why so many? FEMS Microbiol Rev 33(4):785–800

    Article  CAS  Google Scholar 

  • Oliveira SC, Harms JS, Banai M, Splitter GA (1996) Recombinant Brucella abortus proteins that induce proliferation and gamma-interferon secretion by CD4 + T cells from Brucella-vaccinated mice and delayed-type hypersensitivity in sensitized guinea pigs. Cell Immunol 172(2):262–268

    Article  CAS  Google Scholar 

  • Omidfar K, Rasaee MJ, Modjtahedi H, Forouzandeh M, Taghikhani M, Golmakani N (2004) Production of a novel camel single-domain antibody specific for the type III mutant EGFR. Tumor Biol 25(5–6):296–305

    Article  CAS  Google Scholar 

  • Pappas G, Akritidis N, Bosilkovski M, Tsianos E (2005) Brucellosis. N Engl J Med 352(22):2325–2336

    Article  CAS  Google Scholar 

  • Pappas G, Panagopoulou P, Christou L, Akritidis N (2006) Brucella as a biological weapon. Cell Mol Life Sci 63(19–20):2229–2236

    Article  CAS  Google Scholar 

  • Retzlaff C, Yamamoto Y, Hoffman PS, Friedman H, Klein TW (1994) Bacterial heat shock proteins directly induce cytokine mRNA and interleukin-1 secretion in macrophage cultures. Infect Immun 62(12):5689–5693

    CAS  Google Scholar 

  • Rothbauer U, Zolghadr K, Muyldermans S, Schepers A, Cardoso MC, Leonhardt H (2008) A versatile nanotrap for biochemical and functional studies with fluorescent fusion proteins. Mol Cell Proteomics 7(2):282–289

    CAS  Google Scholar 

  • Saerens D, Kinne J, Bosmans E, Wernery U, Muyldermans S, Conrath K (2004) Single domain antibodies derived from dromedary lymph node and peripheral blood lymphocytes sensing conformational variants of prostate-specific antigen. J Biol Chem 279(50):51965–51972

    Article  CAS  Google Scholar 

  • Sambrook J, Russel DW (2001) Molecular cloning: a laboratory manual, vol 3rd ed. Cold Spring Harbour, New York

  • Serruys B, Van Houtte F, Verbrugghe P, Leroux-Roels G, Vanlandschoot P (2009) Llama-derived single-domain intrabodies inhibit secretion of hepatitis B virions in mice. Hepatology 49(1):39–49

    Article  CAS  Google Scholar 

  • Skerra A, Pluckthun A (1988) Assembly of a functional immunoglobulin Fv fragment in Escherichia coli. Science 240(4855):1038–1041

    Article  CAS  Google Scholar 

  • Stevens MG, Olsen SC, Pugh GW, Mayfield JE (1997) Role of immune responses to a GroEL heat shock protein in preventing brucellosis in mice vaccinated with Brucella abortus strain RB51. Comp Immunol Microbiol Infect Dis 20(2):147–153

    Article  CAS  Google Scholar 

  • Stijlemans B, Caljon G, Natesan SK, Saerens D, Conrath K, Perez-Morga D, Skepper JN, Nikolaou A, Brys L, Pays E, Magez S, Field MC, De Baetselier P, Muyldermans S (2011) High affinity nanobodies against the Trypanosome brucei VSG are potent trypanolytic agents that block endocytosis. PLoS Pathog 7(6):e1002072

    Article  CAS  Google Scholar 

  • Teixeira-Gomes AP, Cloeckaert A, Bezard G, Bowden RA, Dubray G, Zygmunt MS (1997a) Identification and characterization of Brucella ovis immunogenic proteins using two-dimensional electrophoresis and immunoblotting. Electrophoresis 18(8):1491–1497

    Article  CAS  Google Scholar 

  • Teixeira-Gomes AP, Cloeckaert A, Bezard G, Dubray G, Zygmunt MS (1997b) Mapping and identification of Brucella melitensis proteins by two-dimensional electrophoresis and microsequencing. Electrophoresis 18(1):156–162

    Article  CAS  Google Scholar 

  • Watarai M, Kim S, Erdenebaatar J, Makino S, Horiuchi M, Shirahata T, Sakaguchi S, Katamine S (2003) Cellular prion protein promotes Brucella infection into macrophages. J Exp Med 198(1):5–17

    Article  CAS  Google Scholar 

  • Zarebski LM, Urrutia M, Goldbaum FA (2005) Llama single domain antibodies as a tool for molecular mimicry. J Mol Biol 349(4):814–824

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Director General of the Atomic Energy Commission of Syria and the head of the Molecular Biology and Biotechnology department for their continuous support throughout this work.

Conflict of interest

The authors report no potential conflicts of interest in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Qader Abbady.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abo Assali, L., Al-Mariri, A., Hamad, E. et al. Immunodetection of the recombinant GroEL by the Nanobody NbBruc02. World J Microbiol Biotechnol 28, 2987–2995 (2012). https://doi.org/10.1007/s11274-012-1109-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-012-1109-z

Keywords

Navigation