Skip to main content

Advertisement

Log in

Escherichia coli flagellin stimulates pro-inflammatory immune response

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Flagellin, a principal component of bacterial flagella, is a virulence factor that is recognized by the innate immune system. Recognition of flagellin by innate immune receptors stimulates the production of cytokines necessary for the development of effective immunity. Here, we demonstrated that the intranasal (i.n.) instillation of different amount of Escherichia coli K-12 flagellin preparation (0.5, 1, 2, 4 μg) in BALB/c mice induced pro-inflammatory immune response. Instillation i.n. of 1 μg of flagellin induced the maximum expression of interleukin 1 beta (IL-1β), tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) mRNA and production of pro-inflammatory cytokines (IL-1β, TNF-α and IL-6) in mice lungs. The same dose of flagellin induced neutrophil polymorphonuclear cells infiltration in peribronchial and perivascular regions. High number of neutrophil in bronchoalveolar lavage fluid was found at 24 h after i.n. instillation of flagellin (1 μg). These findings were concomitant with the maximum production of myeloperoxidase and nitric oxide in mice lungs. Present study showed that the maximum pro-inflammatory mediator levels were found when mice instilled i.n. with 1 μg E. coli flagellin. The amount of flagellin of E. coli K-12 that achieve the maximum stimulation of mucosal pro-inflammatory immune response in mice lungs was explored in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andersen-Nissen E, Hawn TR, Smith KD, Nachman A, Lampano AE, Uematsu S, Akira S, Aderem A (2007) Tlr5_ / _ mice are more susceptible to Escherichia coli urinary tract infection. J Immunol 178:4717–4720

    CAS  Google Scholar 

  • Balloy V, Verma A, Kuravi S, Si-Tahar M, Chignard M, Ramphal R (2007) The role of flagellin versus motility in acute lung disease caused by Pseudomonas aeruginosa. J Infect Dis 196:289–296

    Article  CAS  Google Scholar 

  • Ben-Yedidia T, Tarrab-Hazdai R, Schechtman D, Arnon R (1999) Intranasal administration of synthetic recombinant peptide-based vaccine protects mice from infection by Schistosoma mansoni. Infect Immun 67:4360–4366

    CAS  Google Scholar 

  • Ciacci-Woolwine F, Blomfield IC, Richardson SH, Mizel SB (1998) Salmonella flagellin induces tumor necrosis factor alpha in a human promonocytic cell line. Infect Immun 66:1127–1134

    CAS  Google Scholar 

  • Claud EC, Lu L, Anton PM, Savidge T, Walker WA, Cherayil BJ (2004) Developmentally regulated IkappaB expression in intestinal epithelium and susceptibility to flagellin-induced inflammation. Proc Natl Acad Sci USA 101:7404–7408

    Article  CAS  Google Scholar 

  • Coudriet GM, He J, Trucco M, Mars WM, Piganelli JD (2010) Hepatocyte growth factor modulates Interleukin-6 production in bone marrow derived macrophages: implications for inflammatory mediated diseases. PLoS One 5:e15384

    Article  Google Scholar 

  • Dowling D, Hamilton CM, O’Neill SM (2008) A comparative analysis of cytokine responses, cell surface marker expression and MAPKs in DCs matured with LPS compared with a panel of TLR ligands. Cytokine 41:254–262

    Article  CAS  Google Scholar 

  • Eaves-Pyles T, Murthy K, Liaudet L, Virág L, Ross G, Soriano FG, Szabó C, Salzman AL (2000) Flagellin, a novel mediator of Salmonella-induced epithelial activation and systemic inflammation: IκB degradation, induction of nitric oxide synthase, induction of proinflammatory mediators, and cardiovascular dysfunction. J Immunol 166:1248–1260

    Google Scholar 

  • Feldman M, Bryan R, Rajan S, Scheffler L, Brunnert S, Tang H, Prince A (1998) Role of flagella in pathogenesis of Pseudomonas aeruginosa pulmonary infection. Infect Immun 66:43–51

    CAS  Google Scholar 

  • Felix G, Duran JD, Volko S, Boller T (1999) Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J 18:265–276

    Article  CAS  Google Scholar 

  • Feuillet V, Medjane S, Mondor I, Demaria O, Pagni PP, Gala′n JE, Flavell RA, Alexopoulou L (2006) Involvement of Toll-like receptor 5 in the recognition of flagellated bacteria. Proc Natl Acad Sci USA 103:12487–12492

    Article  CAS  Google Scholar 

  • Gewirtz AT (2006) Flag in the crossroads: flagellin modulates innate and adaptive immunity. Curr Opin Gastroenterol 22:8–12

    Article  CAS  Google Scholar 

  • Gewirtz AT, Simon PO, Schmitt CK, Taylor LJ, Hagedorn CH, O’Brien AD, Neish AS, Madara JL (2001) Salmonella typhimurium translocates flagellin across intestinal epithelia, inducing a proinflammatory response. J Clin Investig 107:99–109

    Article  CAS  Google Scholar 

  • Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, Eng JK, Akira S, Underhill DM, Aderem A (2001) The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410:1099–1103

    Article  CAS  Google Scholar 

  • Hirano S (1996) Migratory responses of PMN after intraperitoneal and intratracheal administration of lipopolysaccharide. Am J Physiol 270:L836–L845

    CAS  Google Scholar 

  • Honko AN, Mizel SB (2004) Mucosal administration of flagellin induces innate immunity in the mouse lung. Infect Immun 72:6676–6679

    Article  CAS  Google Scholar 

  • Honko AN, Mizel SB (2005) Effects of flagellin on innate and adaptive immunity. Immunol Res 33:83–101

    Article  CAS  Google Scholar 

  • Honko AN, Sriranganathan N, Lees CJ, Mizel SB (2006) Flagellin is an effective adjuvant for immunization against lethal respiratory challenge with Yersinia pestis. Infect Immun 74:1113–1120

    Article  CAS  Google Scholar 

  • Huang L-Y, DuMontelle JL, Zolodz M, Deora A, Mozier NM, Golding B (2009) Use of toll-like receptor assays to detect and identify microbial contaminants in biological products. J Clin Microbiol 47:3427–3434

    Article  CAS  Google Scholar 

  • Hwang JH, Chen JC, Yang SY, Wang MF, Chan YC (2011) Expression of tumor necrosis factor-a and interleukin-1b genes in the cochlea and inferior colliculus in salicylate-induced tinnitus. J Neuroinflammation 8:30

    Article  CAS  Google Scholar 

  • Jang CH, Choi JH, Byun MS, Jue DM (2006) Chloroquine inhibits production of TNF-α, IL-1β and IL-6 from lipopolysaccharide-stimulated human monocytes/macrophages by different modes. Rheumatology 45:703–710

    Article  CAS  Google Scholar 

  • Janot L, Sirard JC, Secher T, Noulin N, Fick L, Akira S, Uematsu S, Didierlaurent A, Hussell T, Ryffel B, Erard F (2009) Radioresistant cells expressing TLR5 control the respiratory epithelium’s innate immune responses to flagellin. Eur J Immunol 39:1587–1596

    Article  CAS  Google Scholar 

  • Jeon SH, Ben-Yedidia T, Arnon R (2002) Intranasal immunization with synthetic recombinant vaccine containing multiple epitopes of influenza virus. Vaccine 20:2772–2780

    Article  CAS  Google Scholar 

  • Lo’pez-Boado YS, Cobb LM, Deora R (2005) Bordetella bronchiseptica flagellin is a proinflammatory determinant for airway epithelial cells. Infect Immun 73:7525–7534

    Article  Google Scholar 

  • Marletta MA, Yoon PS, Iyengar R, Leaf CD, Wishnok JS (1988) Macrophage oxidation of l-arginine to nitrite and nitrate: nitric oxide is an intermediate. Biochemistry 27:8706–8711

    Article  CAS  Google Scholar 

  • McDermott PF, Ciacci-Woolwine F, Snipes JA, Mizel SB (2000) High affinity interaction between gram-negative flagellin and a cell surface polypeptide results in human monocyte activation. Infect Immun 68:5525–5529

    Article  CAS  Google Scholar 

  • Medan D, Wang L, Yang X, Dokka S, Castranova V, Rojanasakul Y (2002) Induction of neutrophil apoptosis and secondary necrosis during endotoxin-induced pulmonary inflammation in mice. J Cell Physiol 191:320–326

    Article  CAS  Google Scholar 

  • Mizel SB, Honko AN, Moors MA, Smith PS, West AP (2003) Induction of macrophage nitric oxide production by gram-negative flagellin involves signaling via heteromeric Toll-like receptor 5/Toll-like receptor 4 complexes. J Immunol 170:6217–6223

    CAS  Google Scholar 

  • Mohler J, Azoulay-Dupuis E, Amory-River C, Mazoit JX, Bedos JPP, Rieux V, Moine P (2003) Streptococcus pneumoniae strain-dependent lung inflammatory responses in a murine model of pneumonia. Intensive Care Med 29:808–816

    Google Scholar 

  • Moors MA, Li L, Mizel SB (2001) Activation of interleukin-1 receptor associated kinase by gram-negative flagellin. Infect Immun 69:4424–4429

    Article  CAS  Google Scholar 

  • Mun˜oz N, Van Maele L, Marque′s JM, Rial A, Sirard JC, Chabalgoity JA (2010) Mucosal administration of flagellin protects mice from Streptococcus pneumoniae lung infection. Infect Immun 78:4226–4233

    Article  Google Scholar 

  • Nempont C, Cayet D, Rumbo M, Bompard C, Villeret V, Sirard JC (2008) Deletion of flagellin’s hypervariable region abrogates antibody-mediated neutralization and systemic activation of TLR5-dependent immunity. J Immunol 181:2036–2043

    CAS  Google Scholar 

  • Ramos HC, Rumbo M, Sirard JC (2004) Bacterial flagellins: mediators of pathogenicity and host immune responses in mucosa. Trends Microbiol 12:509–517

    Article  CAS  Google Scholar 

  • Skerrett SJ, Wilson CB, Liggitt HD, Hajjar AM (2007) Redundant Toll-like receptor signaling in the pulmonary host response to Pseudomonas aeruginosa. Am J Physiol Lung Cell Mol Physiol 292:L312–L322

    Article  CAS  Google Scholar 

  • Smith KD, Andersen-Nissen E, Hayashi F, Strobe K, Bergman MA, Barrett SL, Cookson BT, Aderem A (2003) Toll-like receptor 5 recognizes a conserved site on flagellin required for protofilament formation and bacterial motility. Nat Immunol 4:1247–1253

    Article  CAS  Google Scholar 

  • Steiner TS, Nataro JP, Poteet-Smith CE, Smith JA, Guerrant RL (2000) Enteroaggregative Escherichia coli expresses a novel flagellin that causes IL-8 release from intestinal epithelial cells. J Clin Investig 105:1769–1777

    Article  CAS  Google Scholar 

  • Tsai WC, Strieter RM, Zisman DA, Wilkowski JM, Bucknell KA, Chen GH, Standiford TJ (1997) Nitric oxide is required for effective innate immunity against Klebsiella pneumoniae. Infect Immun 65:1870–1875

    CAS  Google Scholar 

  • Vijay-Kumar M, Gewirtz AT (2009) Flagellin: key target of mucosal innate immunity. Mucosal Immunol 2:197–205

    Article  CAS  Google Scholar 

  • Wolfgang MC, Jyot J, Goodman AL, Ramphal R, Lory S (2004) Pseudomonas aeruginosa regulates flagellin expression as part of a global response to airway fluid from cystic fibrosis patients. Proc Natl Acad Sci USA 101:6664–6668

    Article  CAS  Google Scholar 

  • Zgair AK, Chhibber S (2010) Stenotrophomonas maltophilia flagellin induces a compartmentalized innate immune response in mouse lung. J Med Microbiol 59:913–919

    Article  CAS  Google Scholar 

  • Zhang Z, Reenstra W, Weiner DJ, Louboutin JP, Wilson JM (2007) The p38 mitogen-activated protein kinase signaling pathway is coupled to Toll-like receptor 5 to mediate gene regulation in response to Pseudomonas aeruginosa infection in human airway epithelial cells. Infect Immun 75:5985–5992

    Article  CAS  Google Scholar 

  • Zimová-Herknerová M, Mysliveček J, Potměšil P (2008) Retinoic acid attenuates the mild hyperoxic lung injury in newborn mice. Physiol Res 57:33–40

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayaid Khadem Zgair.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zgair, A.K. Escherichia coli flagellin stimulates pro-inflammatory immune response. World J Microbiol Biotechnol 28, 2139–2146 (2012). https://doi.org/10.1007/s11274-012-1019-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-012-1019-0

Keywords

Navigation