Skip to main content

Production of phytohormones, siderophores and population fluctuation of two root-promoting rhizobacteria in Eucalyptus globulus cuttings

Abstract

Vegetative propagation by stem cuttings and mini-cuttings has been used worldwide for growing Eucalyptus plants. However, clones and hybrids of this plant present a great variability in their rooting capacity, apart from a gradual decrease in the rooting potential due to the ontogenetic age of the mother plant. Several studies have demonstrated that some bacteria promote plant growth and rooting through the action of direct and indirect mechanisms that are not still completely clear. Considering this, the objective of this study was to assess the production of auxins, abscisic acid and siderophores in Bacillus subtilis and Stenotrophomona maltophilia, which in previous studies increased rooting of E. globulus cuttings. Additionally, the population of these bacteria in the rhizosphere, superficial tissues of the stem-base and callus of the mini-cuttings was identified, and quantified by real-time PCR. Only S. maltophilia produced IAA in the presence of tryptophan; none of the bacterial strains produced ABA, but both produced siderophores. A comparative analysis of the separation profiles showed that there is a diverse microbial community in the rhizosphere, and only S. maltophilia was capable of keeping its population at a density of 2.03 × 107 cells/mg in different tissues of the mini-cuttings. The results would indicate that the rooting stimulus in E. globulus could be related to the action of one or several mechanisms such as the production of auxins and siderophores, and it could also be associated with the ability of bacteria to stay in the rhizosphere or in plant callus tissues.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Ahmad F, Ahmad I, Khan S (2005) Indole acetic acid production by the indigenous isolates of Azotobacter and fluorescent Pseudomonas in the presence and absence of Tryptophan. Turk J Biol 29:29–34

    CAS  Google Scholar 

  • Araujo F, Assis A, Hungria M (2005) Phytohormones and antibiotics produced by Bacillus subtilis and their effects on seed pathogenic fungi and on soybean root development. World J Microbiol Biotechno 21:1639–1645

    Article  CAS  Google Scholar 

  • Ardon O, Weizman H, Libman J, Shanzer A, Chen I, Hadar Y (1998) Iron uptake in Ustilago maydis: tracking the iron path. J Bacteriol 180:2021–2126

    CAS  Google Scholar 

  • Arshad M, Frankerberger WT Jr (1998) Plant growth-regulating substances in the rhizosfere: microbial production and functions. Adv Agro 62:45–151

    Article  CAS  Google Scholar 

  • Asghar HN, Zahir ZA, Arshad M (2004) Screening rhizobacteria for improving the growth, yield and oil content of canola (Brassica napus L.). Aust J Agric Res 55:187–194

    Article  Google Scholar 

  • Asghar H, Zahir Z, Arshad M, Khaliq A (2002) Relationship between in vitro production of auxins by rhizobacteria and their growth promoting activities in Brassica juncea L. Bio. Fertil Soil 35:231–237

    Google Scholar 

  • Baakza A, Vala AK, Dave BP, Dube HC (2004) A comparative study of siderophore production by fungi from marine and terrestrial habitats. J Exp Mar Biol Ecol 311:1–9

    Article  CAS  Google Scholar 

  • Bar T, Okon Y (1993) Tryptophan conversion to indole-3-acetic acid via indole-3- acetamide in Azospirillum brasilense Sp7. Can J Microbiol 39:81–86

    Article  CAS  Google Scholar 

  • Berg G, Knaape C, Ballin G, Seidel D (1994) Biological control of Verticillium dahliae KLEB by naturally occurring rhizosphere bacteria. Arch Phytopathol Plant Prot 29:249–226

    Google Scholar 

  • Barelman I, Meyer JM, Taraz K, Budzikiewicz H (1996) Cepaciachelin, a new cathecolate siderophore from Burkholderia (Pseudomonas) cepacia. Z Natarfosch 51:627–630

    Google Scholar 

  • Berg G, Eberl L, Hartmann A (2005) The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environ Microbiol 7(11):1673–1685

    Article  CAS  Google Scholar 

  • Buyer JS, Sikora LJ, Chaney RL (1989) A new growth medium for the study of siderophore-mediated interactions. Biol Fertil Soils 8(2):97–101

    Article  Google Scholar 

  • Clarke K, Warwick R (2001) Change in marine communities: an approach to statistical analysis and interpretation, 2nd edn. Primer-E Ltd, Plymouth, UK

  • Couillerot O, Poirier MA, Prigent-Combaret C, Mavingui P, Caballero-Mellado J, Moenne-Loccoz Y (2010) Assessment of SCAR markers to design real-time PCR primers for rhizosphere quantification of Azospirillum brasilense phytostimulatory inoculants of maize. J Appl Microbiol 109:528–538

    CAS  Google Scholar 

  • Crozier A, Arruda P, Jasmin J, Monteiro AM, Sandberg G (1988) Analysis of indole-3-acetic acid and related indoles in culture medium from Azospirillum lipoferum and Azospirillum brasilense. Appl Environ Microbiol 54(11):2833–2837

    CAS  Google Scholar 

  • Díaz K, Valiente C, Martinez M, Castillo M, Sanfuentes E (2009) Root-promoting rhizobacteria in Eucalyptus globulus cuttings. World J Microbiol Biotechnol 25(5):867

    Article  Google Scholar 

  • Dimkpa C, Svatos A, Dabrowska P, Schmidt A, Boland W (2008) Involvement of siderophores in the reduction of metal-induced inhibition of auxin synthesis in Streptomyces spp. Chemosphere 74:19–25

    Article  CAS  Google Scholar 

  • Dobbelaere S, Croonenborghs A, Thys A, Vande Broek A, Vanderleyden J (1999) Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat. Plant Soil 212:156–164

    Article  Google Scholar 

  • Dong D, Yan A, Liu H, Zhang X, Xu Y (2006) Removal of humic substances from soil DNA using aluminium sulfate. J Microbiol Methods 66:217–222

    Article  CAS  Google Scholar 

  • Duineveld BM, Kowalchuk GA, Keijzer A, van Elsas JD, van Veen JA (2001) Analysis of bacterial communities in the rhizosphere of chrysanthemum via denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA as well as DNA fragments coding for 16S rRNA. Appl Environ Microbiol 67:172–178

    Article  CAS  Google Scholar 

  • Dunne C, Moenne-Loccoz Y, de Bruijn F, O’Gara F (2000) Overproduction of an inducible extracellularserine protease improves biological control of Pythium ultimum by Stenotrophomonas maltophilia strain W81. Microbiology 146:2069–2078

    CAS  Google Scholar 

  • Gardener BB, Weller DM (2001) Changes in populations of rhizosphere bacteria associated with take-all disease of wheat. Appl Environ Microbiol 67:4414–4425

    Article  Google Scholar 

  • Goto K, Omura T, Hara Y, Sadaie Y (2000) Application of the partial 16S rDNA sequence as an index for rapid identification of species in the genus Bacillus. J Gen Appl Microbiol 46:1–8

    Article  CAS  Google Scholar 

  • Grayston SJ, Wang S, Campbell CD, Edwards AC (1998) Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol Biochem 30:369–378

    Article  CAS  Google Scholar 

  • Hernández A, Rives N, Caballero A, Hernández A, Heydrich M (2004) Characterization of rhizobacteria associated to maize crop in IAA, siderophores and salicylic acid metabolite production. Rev Colomb Biotechnol VI(1):6–13

    Google Scholar 

  • Heuer H, Smalla K (1997) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) for studying soil microbial communities. In: Van Elsas JD, Trevors JT, Wellington EMH (eds) Modern soil microbiology. Marcel Dekker, NY, pp 353–373

    Google Scholar 

  • INFOR, 2008. Forest Information Center. Forestry Institute. Available from: www.infor.cl

  • Jakobi M, Winkelmann G, Kaiser D, Kempter C, Jung G, Berg G, Bahl H (1996) Maltophilin, a new antifungal compound produced by Stenotrophomona maltophilia R3089. J Antibiot 49:1101–1104

    Article  CAS  Google Scholar 

  • Karadeniz A, Topcuoglu SF, Inan S (2006) Auxin, gibberellin, cytokinin and abscisic acid production in some bacteria. World J Microbiol Biotech 22:1061–1064

    Article  CAS  Google Scholar 

  • Khalid A, Arshad M, Zhair Z (2004) Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. J Appl Microbiol 96:473–480

    Article  CAS  Google Scholar 

  • Kim DS, Weller DM, Cook RJ (1997) Populations dynamics of bacillus sp L324–92R12 and pseudomonas fluorescens 2–79RN10 in the rhizosphere of wheat. Phytopathology 87:559–564

    Article  CAS  Google Scholar 

  • Kloepper J, Leong J, Teintze M, Sichroth M (1980) Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286:885–886

    Article  CAS  Google Scholar 

  • Kravchenko L, Azarova T, Makarova M, Tikhonovich I (2004) The effect of tryptophan present in plant root exudates on the phytostimulating activity of rhizobacteria. Microbiol 73(2):156–158

    Article  CAS  Google Scholar 

  • Kumar B, Kumar M, Annapurna K, Maheshwari DK (2006) Genetic diversity of plant growth promoting rhizobia isolated from a medicinal legume. Mucuna puriens Linn. Curr Sci 91(11):1524–1529

    CAS  Google Scholar 

  • Lacava P, Silva ME, Araújo W, Colnaghi AV, Carrilho E, Tsai S, Azevedo J (2008) Detection of siderophore in endophytic bacteria Methylobacterium spp. Associated with Xylella fastidiosa subsp.pauca. Pesq agropec brás Brasília 43(4):521–528

    Google Scholar 

  • Lucy M, Reed E, Glick B (2004) Applications of free living plant growth promoting rhizobacteria. Antonnie Van Leeuwenhoek 86:1–25

    Article  CAS  Google Scholar 

  • Marriley L, Aragno M (1999) Phylogenetic diversity of bacterial communities differing in degree of proximity of Lolium perenne and Trifolium repens roots. Appl Soil Ecol 13:127–136

    Article  Google Scholar 

  • Martellet C, Fett-Neto A (2005) Role of auxin and its modulators in the adventitious rooting of Eucalyptus species differing in recalcitrance. Plant Growth Regul 45:1–10

    Article  Google Scholar 

  • Martínez-Morales L, Soto Urzua L, Baca B, Sanchez J (2003) Indole -3- butyric acid (IBA) production in culture medium by wild strain Azospirillum brasilense. Microbiology 228:167–173

    Google Scholar 

  • Minkwitz A, Berg G (2001) Comparison of antifungal activities and 16S ribosomal DNA sequences of clinical and environmental isolates of Stenotrophomonas maltophilia. J Clin Microbiol 39(1):139–145

    Article  CAS  Google Scholar 

  • Müller M, Deigele C, Ziegler H (1989) Hormonal interactions in the rhizosphere of maize (Zea mays L.) and their effects on plant development. Z Pflanzen Bodenk 152:247–254

    Article  Google Scholar 

  • Muyzer G, Smalla K (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Van Leeuwenhoek 73:127–141

    Article  CAS  Google Scholar 

  • Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes encoding for 16S rRNA. Appl Environ Microbiol 59:695–700

    CAS  Google Scholar 

  • Nakayama T, Homma Y, Hashidoko Y, Mitzutani J, Tahara S (1999) Posible role of xanthobaccins produced by Stenotrophomonas sp strain sB-K88 in suppression of sugar beet damping-off disease. Appl Environ Microbiol 65:4334–4339

    CAS  Google Scholar 

  • Patten C, Glick B (2002) Role of Pseudomonas putida Indoleacetic Acid in Development of the Host Plant Root System. Appl Environ Microbiol 68:3795–3801

    Article  CAS  Google Scholar 

  • Peixoto R, da Costa H, Rumjanek N, Macrae A, Rosado A (2002) Use of rpoB and 16S rARN genes to analyse bacterial diversity of a tropical soil using PCR and DGGE. Lett Appl Microbiol 35:316–320

    Article  CAS  Google Scholar 

  • Pérez-Miranda S, Cabirol N, George-Téllez R, Zamudio LS, Fernández FJ (2007) O-CAS, a fast and universal method for siderophore detection. J Microbiol Methods 70:127–131

    Article  Google Scholar 

  • Persello-Cartieaux F, Nussaume L, Robaglia C (2003) Tales from the underground: molecular plant-rhizobacteria interactions. Plant Cell Environ 26:189–199

    Article  CAS  Google Scholar 

  • Pilet PE, Chanson A (1981) The role of absicicic acid on maize root growth. A critical examination. Pl. Sci Lett 21:99–106

    Article  CAS  Google Scholar 

  • Pilet PE, Saugy M (1987) Effect on root growth of endogenous and applied IAA and ABA. A critical reexamination. Pl. Physiology 83:33–38

    CAS  Google Scholar 

  • Ramos B, Lucas JA, Probanza A, Domenech J, Gutiérrez FJ (2003) Influence of an indigenous European alder (Alnus glutinosa (L.) Gaertn) rhizobacterium (Bacillus pumilus) on the growth of alder and its rhizosphere microbial community structure in two soils. New For 25:149–159

    Article  Google Scholar 

  • Ruppel S, Ruhlmann J, Merbach W (2006) Quantification and localization of bacteria in plant tissues using quantitative real-time PCR and online emission fingerprinting. Plant Soil 286:21–35

    Article  CAS  Google Scholar 

  • Ryu CM, Hu CH, Locy R, Klopper J (2005) Study of mechanisms for plant growth promotion elicited by rhizobacteria in Arabidopsis thaliana. Plant Soil 268:285–292

    Article  CAS  Google Scholar 

  • Schwyn B, Neilands J (1987) Universal Chemical Assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    Article  CAS  Google Scholar 

  • Sharma A, Johri B (2003) Growth promoting influence os siderophore-producing Pseudomonas strains GRP3A and PRS9 in maize (Zea mays L.) under iron limiting conditions. Microbiol Res 156(3):243–248

    Article  Google Scholar 

  • Smalla K, Wieland G, Buchner A, Zock A, Parzy J, Kaiser S, Roskot N, Heuer H, Berg G (2001) Bulk and Rhizosphere Soil Bacterial Communities Studied by Denaturing Gradient Gel Electrophoresis: Plant-Dependent Enrichment and Seasonal Shifts Revealed. Appl Environ Microbiol 67(10):4742–4751

    Article  CAS  Google Scholar 

  • Söderberg K, Probanza A, Jumpponen A, Bååth E (2004) The microbial community in the rhizosphere determined by community-level physiological profiles (CLPP) and direct soil–and cfu–PLFA techniques. Appl Soil Ecol 25:135–145

    Article  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole -3- acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448

    Article  CAS  Google Scholar 

  • Stubner S (2002) Enumeration of 16 S ADNr of Desulfotomaculum lineage 1 in rice field soil by real-time PCR with SybrGreen™ detection. J Microbiol Methods 50:155–164

    Article  CAS  Google Scholar 

  • Suckstorff I, Berg G (2003) Evidence for dose-dependent effects on plant growth by Stenotrophomonas strains from different origins. J of Appl Microb 95:656–663

    Article  CAS  Google Scholar 

  • Teixeira DA, Alfenas AC, Gonçalves R, Ferreira EM, de Sequeira L, Maffia LA, Mounteer AH (2007) Rhizobacterial promotion of eucalypt rooting and growth. Braz J Microbiol 38:118–123

    Article  Google Scholar 

  • Torres M, Valencia S, Bernal J, Martinez P (2000) Isolation of Enterobacteria, Azotobacter sp. and Pseudomonas spp., producers of indole-3-Acetic Acid and Siderophores, from Colombian rice rhizosphere. Revista Lat Microbiol 42:171–176

    Google Scholar 

  • Torsvik V, Goksoyr J, Daae FL (1990) High diversity in DNA of soil bacteria. Appl Environ Microbiol 56:782–787

    CAS  Google Scholar 

  • Tuomi T, Rosenquist H (1995) Detection of absicicic, gibberellic and indole-3-acetic acid from plant and microbes. Plant Physiol Biochem 33:725–734

    CAS  Google Scholar 

  • Vallaeys T, Topp E, Muyzer G, Macheret V, Laguerre G, Rigaud A, Soulas G (1997) Evaluation of denaturing gradient gel electrophoresis in the detection of 16S rADN sequence variation in rhizobia and methanotrophs. FEMS Microbiol Ecol 24:279–285

    Article  CAS  Google Scholar 

  • Vande Broek A, Lambrecht M, Eggermont K, Vanderleyden J (1999) Auxins up-regulated expression of the indole-3-pyruvate decarboxylase gene in Azospirillum brasilense. J Bacteriol 181:1338–1342

    CAS  Google Scholar 

  • Vespermann A, Kai M, Piechulla B (2007) Rhizobacterial volatiles affect the growth of fungi and Arabidopsis thaliana. Appl Environ Microbiol 73(17):5639–5641

    Article  CAS  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Viswanathan R, Samiyappan R (2007) Siderophores and Iron Nutrition on the Pseudomonas mediated antagonism against Colletotrichum falcatum in sugarcane. Sugar Tech 9(1):57–60

    Article  CAS  Google Scholar 

  • Winkelmann G (2002) Microbial siderophores-mediated transport. Biochem Soc Trans 30:691–695

    Article  CAS  Google Scholar 

  • Yang CH, Crowley DE (2000) Rhizosphere microbial community structure in relation to root location and plant iron nutritional status. Appl Environ Microbiol 66:345–351

    Article  CAS  Google Scholar 

  • Yasmin S, Ahmed B, Soomro R (2003) Influence of ABA, Gibberellin and kinetin on IAA induced adventitious root development on hypocotyl cuttings of mungbean. Biotechnology 2(1):37–43

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katy Díaz Peralta.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Peralta, K.D., Araya, T., Valenzuela, S. et al. Production of phytohormones, siderophores and population fluctuation of two root-promoting rhizobacteria in Eucalyptus globulus cuttings. World J Microbiol Biotechnol 28, 2003–2014 (2012). https://doi.org/10.1007/s11274-012-1003-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-012-1003-8

Keywords

  • Stenotrophomona
  • Bacillus
  • Phytohormones
  • Siderophores
  • Rhizosphere
  • DGGE