Skip to main content
Log in

Actinomycetes from solitary wasp mud nest and swallow bird mud nest: isolation and screening for their antibacterial activity

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The aim of this study was to isolate and screen actinomycetes from solitary wasp and swallow bird mud nests for antimicrobial activity. The actinomycetes were isolated from soil of nests of solitary wasp and swallow bird, and identified on the basis of morphological characteristics and molecular biological methods. A total of 109 actinomycetal isolates were obtained from 12 soil samples (6 from each habitat) using two media. The highest number of actinomycetes were recovered on Humic acid vitamin agar media (65.13%, n = 71) as compared to actinomycetes isolation agar media (34.86%, n = 38). The antimicrobial activity of actinomycetes isolates was determined using the agar plug method. Among 109 isolates, 51 isolates (46.78%) showed antibacterial activity by agar plug assay. The morphological and molecular characteristics confirmed that the most of active isolates in both sample belonged to the genus Streptomyces, the other potential genera like Streptosporangium, Actinomadura, Saccharopolyspora, Thermoactinomycetes and Nocardia were also recovered, but in a low frequency. The isolates designated as 8(1)*, BN-6, MN 2(6), MN 2(7) and MN 9(V) showed most promising activity against various drug resistant bacterial pathogens. It seems that the promising isolates from these unusual/unexplored habitats may prove to be an important step in development of drug for treating multi-drug resistant bacterial pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Badji B, Riba A, Mathieu F, Lebrihi A, Sabaou N (2005) Activite antifongique d’une souche d’Actinomadura d’origine saharienne sur divers champignons pathoge`nes et toxinoge`nes. J Mycol Med 15:211–219

    Article  Google Scholar 

  • Bauer AW, Kirby WMM, Sherries JC, Turck M (1966) Antibiotic sensitivity testing by a standardised single disk method. Am J Clin Pathol 45:493–496

    CAS  Google Scholar 

  • Chun J, Lee JH, Jung Y, Kim M, Kim S, Kim BK, Lim YW (2007) EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261

    Article  CAS  Google Scholar 

  • El-Naggar MY, El-Assar SA, Abdul-Gawad SM (2006) Meroparamycin production by newly isolated Streptomyces sp. strain MAR01: taxonomy, fermentation, purification and structural elucidation. J Microbiol 44:432–438

    CAS  Google Scholar 

  • Ezra D, Castillo UF, Strobel GA, Hess MW, Porter H, Jensen JB, Condron MAM, Teplow DB, Sears J, Maranta M, Hunter M, Weber B, Yaver D (2004) Coronamycins, peptide antibiotics produced by a verticillate Streptomyces sp. (MSU-2110) endophytic on Monstera sp. Microbiology 150:785–793

    Article  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Goodenough AE, Hart AG (2011) Microbiology of bird nest boxes. Microbiologist 12:28–31

    Google Scholar 

  • Goodfellow M, Williams ST (1983) Ecology of actinomycetes. Annu Rev Microbiol 37:189–216

    Article  CAS  Google Scholar 

  • Hayakawa M, Nomura S (1987a) Humic acid-vitamin agar: a new medium for the selective isolation of soil actinomycetes. J Ferment Technol 65:501–509

    Article  CAS  Google Scholar 

  • Hayakawa M, Nonomura H (1987b) Efficacy of artificial humic acid as a selective nutrient in HV agar used for the isolation of soil actinomycetes. J Ferment Techno 65:609–616

    Article  CAS  Google Scholar 

  • Hayakawa M, Sadakata T, Kajiura T, Nonomura H (1991) New methods for the highly selective isolation of Micromonospora and Microbispora from soil. J Ferment Bioeng 72:320–326

    Article  CAS  Google Scholar 

  • Hayakawa M, Takeuchi T, Yamazaki T (1996) Combined use of trimethoprim with nalidixic acid for the selective isolation of actinomycetes from soil. Actinomycetol 10:80–90

    Article  CAS  Google Scholar 

  • Igarashi Y (2004) Screening of novel bioactive compounds from plant-associated actinomycetes. Actinomycetol 18:63–66

    Article  CAS  Google Scholar 

  • IMTECH (1998) Laboratory manual for identification of actinomycetes. Institute of Microbial Technology, Chandigarh, pp 44–46

    Google Scholar 

  • Iwai Y, Omura S (1982) Culture conditions for screening of new antibiotics. J Antibiot 35:123–141

    CAS  Google Scholar 

  • Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic, New York, pp 21–132

    Google Scholar 

  • Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. John Innes Foundation, Norwich

    Google Scholar 

  • Kozone I, Ueda J, Takagi M, Shin-ya K (2009) JBIR-52, a new antimycin-like compound, from Streptomyces sp. ML55. J Antibiot 62:593–595

    Article  CAS  Google Scholar 

  • Kumar V, Bharti A, Gusain OP, Bisht GRS (2010) An improved method for isolation of genomic DNA from filamentous actinomycetes. Technopath J Sci Eng Tech Mgt 2:10–13

    Google Scholar 

  • Kumar V, Bharti A, Gusain O, Bisht GS (2011) Scanning electron microscopy of Streptomyces without use of any chemical fixatives. Scanning 33:1–4. doi:10.1002/sca.20261

    Google Scholar 

  • Locci R (1989) Streptomyces and related genera. In: Williams ST, Sharp ME, Holt JG (eds) Bergey’s manual of systematic bacteriology vol 4. Williams and Wilkins, Baltimore, pp 2451–2506

    Google Scholar 

  • Mitra A, Santra SC, Mukherjee J (2008) Distribution of actinomycetes, their antagonistic behaviour and the physico chemical characteristics of the world’s largest tidal mangrove forest. Appl Microbiol Biotechnol 80:685–695

    Article  CAS  Google Scholar 

  • Mukku VJ, Speitling M, Laatsch H, Helmke E (2000) New butenolides from two marine streptomycetes. J Nat Prod 63:1570–1572

    Article  CAS  Google Scholar 

  • Nolan RD, Cross T (1988) Isolation and screening of actinomycetes. In: Goodfellow M, Williams ST, Mordarski M (eds) Actinomycetes in biotechnology. Academic Press, Inc., San Diego, pp 1–32

    Google Scholar 

  • Nonomura H, Hayakawa M (1988) New methods for selective isolation of soil actinomycetes. In: Okami Y, Beppu T, Ogawara H (eds) Biology of actinomycetes. Japan Scientific Societies Press, Tokyo. ISBN 4-7622-1552-X

  • Nonomura H, Ohara Y (1969) Distribution of actinomycetes in soil. VI. A culture method effective for both preferential isolation and enumeration of Microbispora and Streptosporangium strains in soil (Part 1). J Ferment Technol 47:463–469

    CAS  Google Scholar 

  • Okami Y, Hotta K (1988) Search and discovery of new antibiotics, p. 33–67. In: Goodfellow M, Williams ST, Mordarski M (eds) Actinomycetes in biotechnology. Academic Press, Inc., San Diego

    Google Scholar 

  • Olson EH (1968) Actinomycetes isolation agar. In: Difco: supplementary literature Difco Lab. Detroit (Mich.)

  • Poulsen M, Oh D-C, Clardy J, Currie CR (2011) Chemical analyses of wasp-associated Streptomyces bacteria reveal a prolific potential for natural products discovery. PLoS One 6:e16763. doi:10.1371/journal.pone.0016763

    Article  CAS  Google Scholar 

  • Promnuan Y, Kudo T, Chantawannakul P (2009) Actinomycetes isolated from beehives in Thailand. World J Microbiol Biotechnol 25:1685–1689

    Article  Google Scholar 

  • Radhakrishnan M, Suganya S, Balagurunathan R, Kumar V (2010) Preliminary screening for antibacterial and antimycobacterial activity of actinomycetes from less explored ecosystems. World J Microbiol Biotechnol 26:561–566

    Article  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  Google Scholar 

  • Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340

    Article  Google Scholar 

  • Shomura T, Yoshida J, Amano S, Kojima M, Inouye S, Niida T (1979) Studies on Actinomycetales producing antibiotics only on agar culture. I. Screening, taxonomy and morphology productivity relationship of Streptomyces halstedii, strain SF 1993. J Antibiot 32:425–427

    Google Scholar 

  • Solecka J, Rajnisz A, Laudy AE (2009) A novel isoquinoline alkaloid, DD-carboxypeptidase inhibitor, with antibacterial activity isolated from Streptomyces sp. 8,812. Part I: Taxonomy, fermentation, isolation and biological activities. J Antibiot 62:575–580

    Article  CAS  Google Scholar 

  • Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequences analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 44:846–849

    CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighing, position specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  Google Scholar 

  • Wang J, Soisson SM, Young K, Shoop W, Kodali S, Galgoci A, Painter R, Tang YS, Parthasarathy G, Cummings R et al (2006) Platensimycin is a selective FabF inhibitor with potent antibiotic properties. Nature 441:358–361

    Article  CAS  Google Scholar 

  • Wang M, Yang XH, Wang JD, Wang XJ, Chen ZJ, NXiang WS (2009) New beta-class milbemycin compound from Streptomyces avermitilis NEAU1069: fermentation, isolation and structure elucidation. J Antibiot 62:587–591

    Article  CAS  Google Scholar 

  • Williams ST, Sharpe ME, Holt JG (1989) Bergey’s manual of systematic bacteriology, vol 4. Williams and Wilkins, Baltimore

    Google Scholar 

  • Wu XC, Chen WF, Qian CD, Li O, Li P, Wen YP (2007) Isolation and identification of newly isolated antagonistic Streptomyces sp. strain AP19–2 producing chromomycins. J Microbiol 45:499–504

    CAS  Google Scholar 

  • Xie Z, Xu Z, Shen W, Pei-Lin Cen P (2005) Bioassay of mildiomycin and a rapid, cost-effective agar plug method for screening high-yielding mutants of mildiomycin. World J Microbiol Biotechnol 21:1433–1437

    Article  CAS  Google Scholar 

Download references

Acknowledgments

GRSB, VK and AB thank the Uttarakhand State Council of Science and Technology for grant received (UCS &T/R&D/LS/06-07/1158) to carry out this study and to the Management of S.B.S.P.G.I., Dehradun for providing necessary research facilities. The authors are also thankful to the Wadia Institute of Himalayan Geology, Dehradun, India for providing scanning electron microscopy facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gajraj Singh Bisht.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 997 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, V., Bharti, A., Gupta, V.K. et al. Actinomycetes from solitary wasp mud nest and swallow bird mud nest: isolation and screening for their antibacterial activity. World J Microbiol Biotechnol 28, 871–880 (2012). https://doi.org/10.1007/s11274-011-0884-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-011-0884-2

Keywords

Navigation