Skip to main content
Log in

Effects of external calcium on the biotransformation of ginsenoside Rb1 to ginsenoside Rd by Paecilomyces bainier 229-7

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Calcium is a known signalling molecule in eukaryotic cells and plays a central role in the regulation of many cellular processes. In the following study, we report on the effect of external calcium treatments on the biotransformation of ginsenoside Rb1 to ginsenoside Rd by Paecilomyces bainier 229-7. We observed that the intracellular calcium content of P. bainier 229-7 mycelia was increased in response to exposure to high external Ca2+ concentrations. Both ginsenoside Rd biotransformation and β-glucosidase activity were both found to be dependent on the external calcium concentration. At an optimal Ca2+ concentration of 45 mM, maximal ginsenoside Rd bioconversion rate of 92.44% was observed and maximal β-glucosidase activity of 0.1778 U was reached in a 72-h biotransformation. The Ca2+ channel blocker Verapamil blocked the trans-membrane influx of calcium and decreased ginsenoside Rd biotransformatiom. In addition, β-glucosidase activity and ginsenoside Rd content decreased by 36.0 and 29.2% respectively after a 72-h incubation in the presence of 0.05 mM Calmodulin (CaM) antagonist Perphenazine. These results suggest that both Ca2+ channels and CaM are involved in ginsenoside Rd biotransformation via regulation of β-glucosidase activity. This is the first report regarding the effects of calcium signal transduction on biotransformation and enzyme activity in fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akao T, Kida H, Kanaoka M, Hattori M, Kobashi K (1998) Intestinal bacterial hydrolysis is required for the appearance of compound K in rat plasma after oral administration of ginsenoside Rb1 from Panax ginseng. J Pharm Pharmacol 50(10):1155–1160

    Article  CAS  Google Scholar 

  • Berridge M, Bootman M, Roderick H (2003) Calcium signaling: dynamics, homeostasis and remodeling. Nat Rev Mol Cell Biol (4):517–529

  • Campbell AK (ed) (1983) Intracellular calcium: its universal role as regulator. Wiley, Chichester

    Google Scholar 

  • Carafoli E, Klee C (eds) (1999) Calcium as a cellular regulator. Oxford Univ Press, New York

    Google Scholar 

  • Chin D, Means AR (2000) Calmodulin: a prototypical calcium sensor. Trends Cell Biol 10(8):322–328. doi:10.1016/s0962-8924(00)01800-6

    Article  CAS  Google Scholar 

  • Clapham DE (2007) Calcium Signaling. Cell 131(6):1047–1058. doi:10.1016/j.cell.2007.11.028

    Article  CAS  Google Scholar 

  • Dagher R, Brière C, Fève M, Zeniou M, Pigault C, Mazars C, Chneiweiss H, Ranjeva R, Kilhoffer M-C, Haiech J (2009) Calcium fingerprints induced by Calmodulin interactors in eukaryotic cells. Biochimica et Biophysica Acta (BBA)—Mol Cell Res 1793(6):1068–1077. doi:10.1016/j.bbamcr.2008.11.019

    Google Scholar 

  • Dileva F, Domi T, Fedrizzi L, Lim D, Carafoli E (2008) The plasma membrane Ca2+ ATPase of animal cells: structure, function and regulation. Arch Biochem Biophys 476(1):65–74. doi:10.1016/j.abb.2008.02.026

    Article  CAS  Google Scholar 

  • Edward F, Nemeth B (eds) (1996) Regulation of cellular functions by extracellular calcium. In: Edward B. UW-Madison

  • Jeyaraju DV, Cisbani G, Pellegrini L (2009) Calcium regulation of mitochondria motility and morphology. Biochimica et Biophysica Acta (BBA)—Bioenergetics 1787(11):1363–1373. doi:10.1016/j.bbabio.2008.12.005

  • Lee MA, Dunn RC, Clapham DE, Stehno-Bittel L (1998) Calcium regulation of nuclear pore permeability. Cell Calcium 23(2–3):91–101

    Google Scholar 

  • Lee J, Ishihara A, Oxford G, Johnson B, Jacobson K (1999) Regulation of cellmovement is mediated by stretch-activated calcium channels. Nature 400(6742):382–386

    Article  CAS  Google Scholar 

  • Lew RR (1998) Mapping fungal ion channel distributions. Fung Genet Biol 24:69–76

    Article  CAS  Google Scholar 

  • Lew RR (1999) Comparative analysis of Ca2+ and H+ flux magnitude and location along growing hyphae of Saprolegnia ferax and Neurospora crassa. Eur J Cell Biol 78:892–902

    CAS  Google Scholar 

  • Michaylova V, Yuroukova L (1974) Arsenazo III as a spectrophotometric reagent for zinc and cadmium. Anal Chim Acta 68(1):73–82. doi:10.1016/s0003-2670(01)85147-3

    Article  Google Scholar 

  • Muto Y, Nozawa Y (1985) Ca2+ transport studied with arsenazo III in Tetrahymena microsomes. Effects of calcium ionophore A23187 and trifluoperazine. Biochimica et Biophysica Acta (BBA)—Biomembranes 815(3):410–416. doi:10.1016/0005-2736(85)90368-2

  • Nelson G, Kozlova-Zwinderman O, Collis AJ, Knight MR, Fincham JRS, Stanger CP, Renwick A, Hessing JGM, Punt PJ, Van Den Hondel CAMJJ, Read ND (2004) Calcium measurement in living filamentous fungi expressing codon-optimized aequorin. Mol Microbiol 52(5):1437–1450. doi:10.1111/j.1365-2958.2004.04066.x

    Article  CAS  Google Scholar 

  • Odani T, Tanizawa H, Takino Y (1983) Studies on the absorption, distribution, excretion and metabolism of ginseng saponins. IV. Decomposition of ginsenoside-Rg1 and -Rb1 in the digestive tract of rats. J Chem Pharm Bull 31(10):3691–3697

    Google Scholar 

  • Petersen OH, Michalak M, Verkhratsky A (2005) Calcium signalling: past, present and future. Cell Calcium 38(3–4):161–169. doi:10.1016/j.ceca.2005.06.023

    Article  CAS  Google Scholar 

  • Piñol MT, Palazón J, Cusidó RM, Ribó M (1999) Influence of calcium ion-concentration in the medium on tropane alkaloid accumulation in Datura stramonium hairy roots. Plant Sci 141(1):41–49. doi:10.1016/s0168-9452(98)00222-2

    Article  Google Scholar 

  • Rasmussen H, Barrett P, Smallwood J, Bollag W, Isales C (1990) Calcium ion as intracellular messenger and cellular toxin. Environ Health Perspect 81:17–25

    Article  Google Scholar 

  • Royse D (2003) Influence of precipitated calcium carbonate (CaCO3) on shiitake (Lentinula edodes) yield and mushroom size. Bioresour Technol 90(2):225–228. doi:10.1016/s0960-8524(03)00119-6

    Article  CAS  Google Scholar 

  • Silverman-Gavrila LB, Lew RR (2001) Regulation of the tip-high [Ca2+] gradient in growing hyphae of the fungus. Eur J Cell Biol 80(6):379–390. doi:10.1078/0171-9335-00175

    Article  CAS  Google Scholar 

  • Stevens F (1983) Calmodulin: an introduction. Can J Biochem Cell Biol 61(8):906–910

    Article  CAS  Google Scholar 

  • Tadross MR, Dick IE, Yue DT (2008) Mechanism of Local and Global Ca2+ Sensing by Calmodulin in Complex with a Ca2+ Channel. Cell 133(7):1228–1240. doi:10.1016/j.cell.2008.05.025

    Article  CAS  Google Scholar 

  • Taylor CW (2002) Controlling calcium entry. Cell 111(6):767–769. doi:10.1016/s0092-8674(02)01197-2

    Article  CAS  Google Scholar 

  • Tsien RW, Tsien RY (1990) Calcium channels, stores, and oscillations. Annu Rev Cell Biol 6(1):715–760. doi:10.1146/annurev.cb.06.110190.003435

    Article  CAS  Google Scholar 

  • White BA, Bancroft C (1987) Ca2+/Calmodulin regulation of prolactin gene expression. In: Anthony R, Means PMC (eds) Methods in enzymology, vol 139. Academic Press, London, pp 655–667

    Google Scholar 

  • Yan Q, Zhou W, Shi X, Zhou P, Ju D, Feng M (2010) Biotransformation pathways of ginsenoside Rb1 to compound K by β-glucosidases in fungus Paecilomyces Bainier sp. 229. Process Biochemistry 45(9):1550–1556. doi:10.1016/j.procbio.2010.06.007

    Google Scholar 

  • Ye L, Zhou C-Q, Zhou W, Zhou P, Chen D-F, Liu X-H, Shi X-L, Feng M-Q (2010) Biotransformation of ginsenoside Rb1 to ginsenoside Rd by highly substrate-tolerant Paecilomyces bainier 229–7. Bioresour Technol 101(20):7872–7876. doi:10.1016/j.biortech.2010.04.102

    Article  CAS  Google Scholar 

  • Yue C-J, Zhong J-J (2005) Impact of external calcium and calcium sensors on ginsenoside Rb1 biosynthesis byPanax notoginseng cells. Biotechnol Bioeng 89(4):444–452. doi:10.1002/bit.20386

    Article  CAS  Google Scholar 

  • Zhou W, Yan Q, Li JY, Zhang XC, Zhou P (2008) Biotransformation of Panax notoginseng saponins into ginsenoside compound K production by Paecilomyces bainier sp. 229. J Appl Microbiol 104(3):699–706. doi:10.1111/j.1365-2672.2007.03586.x

    Google Scholar 

Download references

Acknowledgments

The authors are thankful to the financial support of Chinese National Nature Science Foundation (30772676) and National Science and Technology Major Project (2009ZX09301-011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meiqing Feng.

Additional information

Li Ye and Chunyan Zhang contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, L., Zhang, C., Li, J. et al. Effects of external calcium on the biotransformation of ginsenoside Rb1 to ginsenoside Rd by Paecilomyces bainier 229-7. World J Microbiol Biotechnol 28, 857–863 (2012). https://doi.org/10.1007/s11274-011-0882-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-011-0882-4

Keywords

Navigation