Skip to main content
Log in

Genus-specific and phase-dependent effects of nitrate on a sulfate-reducing bacterial community as revealed by dsrB-based DGGE analyses of wastewater reactors

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The biogenic production of hydrogen sulfide is a serious problem associated with wastewater treatment. The aim of this study was to investigate the inhibitory effect of nitrate on the dynamics of sulfate-reducing bacteria (SRB) community in a laboratory-scale wastewater reactor, originating from a denitrifying plant using activated sludge. For this purpose, denaturing gradient gel electrophoresis (DGGE) analysis targeting the dsrB (dissimilatory sulfite reductase) gene was used in combination with chemical analyses and measurement of oxidation and reduction potential (ORP). The reactors were initially dosed with 1.0 and 4.0 g/L potassium nitrate and anaerobically incubated for 490 h. Addition of 4.0 g/L nitrate to the reactor was associated with a prolonged inhibition (over 300 h, i.e., 12.5 days) of sulfate reduction and this was consistent with a rapid decrease in ORP associated with nitrate depletion. The DGGE analysis revealed that nitrate addition remarkably attenuated a distinct group of dsrB related to Desulfovibrio, whereas other dsrB groups were not influenced. Furthermore, another sulfate reduction by Syntrophobacter in the later stages of the incubation period occurred in both reactors (regardless of the nitrate concentration), suggesting that different SRB groups are associated with sulfate reduction at different stages of the wastewater treatment process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

SRB:

Sulfate-reducing bacteria

ORP:

Oxidation and reduction potential

DGGE:

Denaturing gradient gel electrophoresis

PCR:

Polymerase chain reaction

COD:

Chemical oxygen demand

SDS:

Sodium dodecyl sulfate

References

  • Altschul DJ, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  Google Scholar 

  • Bernardina LM, Kuijk V, Stams AJM (1995) Sulfate reduction by a syntrophic propionate-oxidizing bacterium. Antonie van Leeuwenhoek 68:293–296

    Article  Google Scholar 

  • Chi Fru E (2010) Microbial evolution of sulphate reduction when lateral gene transfer is geographically restricted. Int J Syst Evol Microbiol doi: 10.1099/ijs.0.026914-0

  • Dar SA, Yao L, Dongen U, Kuenen JG, Muyzer G (2007) Analysis of diversity and activity of sulfate-reducing bacterial communities in sulfidogenic bioreactors using 16S rRNA and dsrB genes as molecular markers. Appl Environ Microbiol 73:594–604

    Article  CAS  Google Scholar 

  • De Lomas JG, Corzo A, Gonzalez JM, Andrades JA, Iglesias E, Montero MJ (2006) Nitrate promotes biological oxidation of sulfide in wastewaters: experiment at plant-scale. Biotechnol Bioeng 93:801–811

    Article  Google Scholar 

  • Friedrich MW (2002) Phylogenetic analysis reveals multiple lateral transfer of adenosine-5′-phosphosulfate reductase genes among sulfate-reducing microorganisms. J Bacteriol 184:278–289

    Article  CAS  Google Scholar 

  • Geets J, Borremans B, Diels L, Springael D, Vangronsveld J, Lelie D, Vanbroekhoven K (2006) DsrB gene-based DGGE for community and diversity surveys of sulfate-reducing bacteria. J Microbiol Methods 66:194–205

    Article  CAS  Google Scholar 

  • Greene EA, Hubert C, Nemati M, Jenneman GE, Voordouw G (2003) Nitrite reductase activity of sulfate-reducing bacteria prevents their inhibition by nitrate-reducing, sulfide-oxidizing bacteria. Environ Microbiol 5:607–617

    Article  CAS  Google Scholar 

  • Grigoryan AA, Cornish SL, Buziak B, Lin S, Cavallaro A, Arensdorf JJ, Voordouw G (2008) Competitive oxidation of volatile fatty acids by sulfate- and nitrate- reducing bacteria from oil field in Argentina. Appl Environ Microbiol 74:4324–4335

    Article  CAS  Google Scholar 

  • Haveman SA, Greene EA, Stilwell CP, Voordouw JK, Voordouw G (2004) Physiological and gene expression analysis of inhibition of Desulfovibrio vulgaris Hildenborough by nitrite. J Bacteriol 186:7944–7950

    Article  CAS  Google Scholar 

  • Hubert C, Voordouw G (2007) Oil field souring control by nitrate-reducing Sulfurospirillum spp. that outcompete sulfate-reducing bacteria for organic electron donors. Appl Environ Microbiol 73:2644–2652

    Article  CAS  Google Scholar 

  • Joulian C, Ramsing NB, Ingvorsen K (2001) Congruent phylogenies of most common small-subunit rRNA and dissimilatory sulfite reductase gene sequences retrieved from estuarine sediments. Appl Environ Microbiol 67:3314–3318

    Article  CAS  Google Scholar 

  • Kawahara N, Shigematsu K, Miura S, Miyadai T, Kondo R (2008) Distribution of sulfate-reducing bacteria in fish farm sediments on the coast southern Fukui prefecture, Japan. Plankton Benthos Res 3:42–45

    Article  Google Scholar 

  • Klein M, Friedrich M, Roger AJ, Hugenholtz P, Fishbain S, Abicht H, Blackall LL, Stahl DA, Wagner M (2001) Multiple lateral transfers of dissimilatory sulfite reductase genes between major lineages of sulfate-reducing prokaryotes. J Bacteriol 183:6028–6035

    Article  CAS  Google Scholar 

  • Kondo R, Buntani J (2007) Comparison of the diversity of sulfate-reducing bacterial communities in the water column and the surface sediments of a Japanese meromictic lake. Limnology 8:131–141

    Article  CAS  Google Scholar 

  • Kondo R, Nedwell DB, Purdy KJ, Silva SQ (2004) Detection and enumeration of sulphate-reducing bacteria in estuarine sediments by competitive PCR. Geomicrobiol J 21:145–157

    Article  CAS  Google Scholar 

  • McInerney MJ, Stams AJM, Boone DR (2005) Genus I. Syntrophobacter. Bergy’s manual of systematic bacteriology 2nd ed Springer New York, pp 1021–1027

  • Mohanakrishnan J, Gutierrez O, Meyer RL, Yuan Z (2008) Nitrite effectively inhibits sulfide and methane production in a laboratory scale sewer reactor. Water Res 42:3961–3971

    Article  CAS  Google Scholar 

  • Mukhopadhyay A et al (2007) Cell-wide responses to low-oxygen exposure in Desulfovibrio vulgaris Hildenborough. J Bacteriol 189:5996–6010

    Article  CAS  Google Scholar 

  • Muyzer G, Stams AJM (2008) The ecology and biotechnology of sulphate-reducing bacteria. Nat Rev Microbiol 6:441–454

    CAS  Google Scholar 

  • Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes encoding for 16S rRNA. Appl Environ Microbiol 59:695–700

    CAS  Google Scholar 

  • Padival N, Kimbell WA, Redner JA (1995) Use of iron salts to control dissolved sulfide in trunk sewers. J Environ Eng 121:824–829

    Article  CAS  Google Scholar 

  • Polz MF, Cavanaugh CM (1998) Bias in template-to-product ratios in multitemplate PCR. Appl Environ Microbiol 64:3724–3730

    CAS  Google Scholar 

  • Postgate JR (1984) The sulphate-reducing bacteria, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Schramm A, Santegoeds CM, Nielsen HK, Ploug H, Wagner M, Pribyl M, Wanner J, Amann R, Beer DD (1999) On the occurrence of anoxic microniches, denitrification, and sulfate reduction in aerated activated sludge. Appl Environ Microbiol 65:4189–4196

    CAS  Google Scholar 

  • Shabir A, Dar LY, Dongen U, Kuenen JG, Muyzer G (2007) Analysis of diversity and activity of sulfate-reducing bacterial communities in sulfidogenic bioreactors using 16S rRNA and dsrB genes as molecular markers. Appl Environ Microbiol 73:594–604

    Article  Google Scholar 

  • Stahl DA, Fishbain S, Klein M, Baker BJ, Wagner M (2002) Origins and diversification of sulfate-respiring microorganisms. Antonie Leeuwenhoek 81:189–195

    Article  CAS  Google Scholar 

  • Steenkamp DJ, Peck HD Jr (1981) Proton translocation associated with nitrite respiration in Desulfovibrio desulfuricans. J Biol Chem 256:5450–5458

    CAS  Google Scholar 

  • Strickland JDH, Parsons TR (1968) A practical handbook of seawater analysis. Fish Res Board Can Bull 167:311

  • Telang AJ, Ebert S, Foght JM, Westlake DWS, Jenneman GE, Gevertz D, Voordouw G (1997) The effect of nitrate injection on the microbial community in an oil field as monitored by reverse sample genome probing. Appl Environ Microbiol 63:1785–1793

    CAS  Google Scholar 

  • Zverlov V, Klein M, Lucker M, Friedrich MW, Kellermann J, Stahl DA, Loy A, Wagner M (2005) Lateral gene transfer of dissimilatory (bi) sulfite reductase revisited. J Bacteriol 187:2203–2208

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the staff of the wastewater facility for their help with sample collection. We also thank Dr. Ryuji Kondo, Fukui Prefectural University, for providing helpful discussions relating to the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kouhei Mizuno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mizuno, K., Morishita, Y., Ando, A. et al. Genus-specific and phase-dependent effects of nitrate on a sulfate-reducing bacterial community as revealed by dsrB-based DGGE analyses of wastewater reactors. World J Microbiol Biotechnol 28, 677–686 (2012). https://doi.org/10.1007/s11274-011-0862-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-011-0862-8

Keywords

Navigation