Skip to main content
Log in

Effects of hydrogen peroxide on the motility, catalase and superoxide dismutase of dam and/or seqA mutant of Salmonella typhimurium

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In addition to their role in the virulence attenuation of Salmonella and other pathogens, dam or seqA genes increase the sensitivity towards hydrogen peroxide. The aim of our study is to investigate the effect of H2O2 on the motility, the catalase and superoxide dismutase activities of dam and/or seqA mutants of Salmonella typhimurium. Our findings showed significant differences of the effects of H2O2 on the motility between wild type strain and all of mutants. Hydrogen peroxide changes SOD isoenzyme profile of these mutants by disappearance of Fe-SOD. Concerning the catalase, an increase of its activity was observed in the wild type, dam and seqA mutant. However, H2O2 decreases the activity of this enzyme in the double mutant strain. We can suggest that the dam gene, together with seqA, play a protective role in the oxidative stress response of Salmonella typhimurium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Beauchamp CO, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  CAS  Google Scholar 

  • Beers RF, Sizer IW (1954) Sulfide inhibition of catalase. Science 120:32–33

    Article  CAS  Google Scholar 

  • Blyn LB, Braaten BA, Low DA (1990) Regulation of pap pilin phase variation by a mechanism involving differential dam methylation states. EMBO J 9:4045–4054

    CAS  Google Scholar 

  • Buchmeier NA, Libby SJ, Xu Y, Loewen PC, Switala J, Guiney DG, Fang FC (1995) DNA repair is more important than catalase for Salmonella virulence in mice. J Clin Invest 95:1047–1053

    Article  CAS  Google Scholar 

  • Carlsson J, Berglin EH, Claesson R, Edlund M-BK, Persson S (1988) Catalase inhibition by sulfide and hydrogen peroxide-induced mutagenicity in Salmonella typhimurium strain TA102. Mutat Res 202:59–64

    Article  CAS  Google Scholar 

  • Chatti A, Daghfous D, Landoulsi A (2007) Effect of seqA mutation on Salmonella typhimurium virulence. J Infect 54:e241–e245

    Article  Google Scholar 

  • Chatti A, Landoulsi A (2008) L’état de la méthylation de l’ADN régule la virulence et la réponse au stress chez Salmonella. CR Biologies 331:648–654

    Article  CAS  Google Scholar 

  • Chatti A, Daghfous D, Landoulsi A (2008) Effect of repeated in vivo passage (in mice) on Salmonella typhimurium dam mutant virulence and fitness. Pathol Biol 56:121–124

    Article  CAS  Google Scholar 

  • Farr SB, Kogoma T (1991) Oxidative stress responses in Escherichia coli and Salmonella typhimurium. Microbiol Rev 55:561–585

    CAS  Google Scholar 

  • Giacomodonato MN, Sarnacki MH, Caccuri RL, Sordelli DO, Cerquetti MC (2004) Host response to a dam mutant of Salmonella enterica serovar Enteritidis with a temperature sensitive phenotype. Infect Immun 72:5498–5501

    Article  CAS  Google Scholar 

  • Groisman EA, Heffron F (1995) Regulation of Salmonella virulence by two-component regulatory systems. In: Hoch JA, Silhavy TJ (eds) Two-Component Signal Transduction. American Society for Microbiology Press, Washington, DC, pp 319–332

    Google Scholar 

  • Hassett DJ, Cohen MS (1989) Bacterial adaptation to oxidative stress: implications for pathogenesis and interaction with phagocytic cells. FASEB J 3:2574–2582

    CAS  Google Scholar 

  • Heithoff DM, Sinsheimer RL, Low DA, Mahan MJ (1999) An essential role for DNA adenine methylation in bacterial virulence. Science 284:967–970

    Article  CAS  Google Scholar 

  • Heithoff DM, Enioutina EY, Daynes RA, Sinsheimer RL, Low DA, Mahan MJ (2001) Salmonella DNA adenine methylase mutants confer cross-protective immunity. Infect Immun 69:6725–6730

    Article  CAS  Google Scholar 

  • Jakomin M, Chessa D, Baumler AJ, Casadesus J (2008) Regulation of the Salmonella enterica std Fimbrial operon by DNA adenine methylation, SeqA, and HdfR. J Bacteriol 190:7406–7413

    Article  CAS  Google Scholar 

  • Loui C, Chang AC, Lu S (2009) Role of the ArcAB two-component system in the resistance of Escherichia coli to reactive oxygen stress. BMC Microbiology 9:183

    Article  Google Scholar 

  • Nicholson B, Low D (2000) DNA methylation-dependent regulation of pef expression in Salmonella typhimurium. Mol Microbiol 35:728–742

    Article  CAS  Google Scholar 

  • Parkinson JS, Kofoid EC (1992) Communication modules in bacterial signaling proteins. Annu Rev Genet 26:71–112

    Article  CAS  Google Scholar 

  • Vazquez-Torres A, Jones-Carson J, Mastroeni P, Ischiropoulos H, Fang FC (2000) Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. I. Effects on microbial killing by activated peritoneal macrophages in vitro. J Exp Med 192:227–236

    Article  CAS  Google Scholar 

  • Yallaly P, Eisenstark A (1990) Influence of DNA adenine methylase on the sensitivity of Escherichia coli to near-UV radiation and hydrogen peroxide. Biochem Biophys Res Commun 169:64–69

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by: « Ministère de l’Enseignement Supérieur; Faculté des Sciences de Bizerte-Département de Biologie » . We thank Pr. Casadesus J. for providing Salmonella strains.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelwaheb Chatti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chatti, A., Messaoudi, N., Mihoub, M. et al. Effects of hydrogen peroxide on the motility, catalase and superoxide dismutase of dam and/or seqA mutant of Salmonella typhimurium . World J Microbiol Biotechnol 28, 129–133 (2012). https://doi.org/10.1007/s11274-011-0801-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-011-0801-8

Keywords

Navigation