Skip to main content

Advertisement

Log in

16S rRNA-based bacterial diversity in the organic-rich sediments underlying oxygen-deficient waters of the eastern Arabian Sea

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The eastern Arabian Sea has a unique and permanent oxygen minimum zone (OMZ) that extends along the western continental margin of India. The sediment below this region is rich in organic matter. This study describes the bacterial community structure and diversity in OMZ sediments of the eastern Arabian Sea (AS) through 16S rRNA clone library analysis. Phylogenetic analysis of the sequences demonstrated that phylum Proteobacteria (52%), followed by Planctomycetes (12.7%), Chloroflexi and an unidentified bacterial group (8.8% each) were represented in the library. Deltaproteobacteria was the dominant class (62.5%) in phylum Proteobacteria with clones falling in orders Syntrophobacterales and Desulfovibrionales. Few minor phylogenetic groups, corresponding to Spirochetes, Firmicutes, Acidobacteria and Verrucomicrobia were found. Unidentified candidate groups falling in OP11, OP8 and OP3 were represented by 0.9, 2.9 and 3.9%, respectively and two clusters of the cloned sequences in this study showed very low identity to known sequences. This is the first report that discusses the phylogenetic groups in the OMZ sediments of eastern Arabian Sea individually and compares it with available data from marine hypoxic locales and water mass. LIBSHUFF statistics revealed high richness of the bacterial community of the Arabian Sea OMZ (AS-OMZ) compared to the other regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abell GCJ, Bowman JP (2005) Ecological and biogeographic relationships of class Flavobacteria in the Southern Ocean. FEMS Microbiol Ecol 51:265–277

    Article  CAS  Google Scholar 

  • Acinas SG, Klepac-Ceraj V, Hunt D, Pharino C, Ceraj I, Distel D, Polz MF (2004) Fine-scale phylogenetic architecture of a complex bacterial community. Nature 430:551–554

    Article  CAS  Google Scholar 

  • Alldredge AL (2000) Interstitial dissolved organic carbon (DOC) concentrations within sinking marine aggregates and their potential contribution to carbon flux. Limnol Oceanogr 45:1245–1253

    Article  CAS  Google Scholar 

  • Amann RI, Ludwig W, Schleifer K (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    CAS  Google Scholar 

  • Ashelford KE, Chuzhanova NA, Fry JC, Jones AJ, Weightman AJ (2005) At least 1 in 20 16S rRNA sequence records currently held in public repositories is estimated to contain substantial anomalies. Appl Environ Microbiol 71:7724–7736

    Article  CAS  Google Scholar 

  • Barns SM, Fundyga RF, Jeffries MW, Pace NR (1994) Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. Proc Natl Acad Sci USA 91:1609–1613

    Article  CAS  Google Scholar 

  • Bissett A, Burke C, Cook PLM, Bowman JP (2007) Bacterial community shifts in organically perturbed sediments. Environ Microbiol 9:46–60

    Article  CAS  Google Scholar 

  • Boetius A, Ferdelman T, Lochte K (2000) Bacterial activity in sediments of the deep Arabian Sea in relation to vertical flux. Deep Sea Res II 47:2835–2875

    Article  Google Scholar 

  • Boivin-Jahns V, Ruimy R, Bianchi A, Daumas S, Christen R (1996) Bacterial diversity in a deep-subsurface clay environment. Appl Environ Microbiol 9:3405–3412

    Google Scholar 

  • Bowman JP, McCuaig RD (2003) Biodiversity community structural shifts and biogeography of prokaryotes within Antarctic continental shelf sediment. Appl Environ Microbiol 69:2463–2483

    Article  CAS  Google Scholar 

  • Chandler DP, Fredrickson JK, Brockman FJ (1997) Effect of PCR template concentration on the composition and distribution of total community 16S rDNA clone libraries. Mol Ecol 6:475–482

    Article  CAS  Google Scholar 

  • Chang TS, Bartholomae A, Tilch E, Flemming BW (2003) Recent development of the backbarrier tidal basin behind the island of Spiekeroog in the East Frisian Wadden Sea. Ber Forschszentrum Terramare 12:43–44

    Google Scholar 

  • Chin K, Liesack W, Janssen PH (2001) Opitutus terrae gen.nov.sp.nov.to accommodate novel strains of the division Verrucomicrobia isolated from rice paddy soil. Int J Syst Evol Microbiol 51:1965–1968

    Article  CAS  Google Scholar 

  • Cho JC, Giovannoni SJ (2004) Cultivation and growth characteristics of a diverse group of oligotrophic marine Gammaproteobacteria. Appl Environ Microbiol 70:432–440

    Article  CAS  Google Scholar 

  • Codispoti LA, Flagg C, Kelly V, Swift JH (2005) Hydrographic conditions during the 2002 SBI process experiments. Deep Sea Res II 52:3199–3226

    Article  Google Scholar 

  • Cole JR, Chai B, Marsh TL, Farris RJ, Wang Q, Kulam SA, Chandra S, McGarrel DM, Schmidt TM, Garrity GM, Tiedje JM (2003) The ribosomal database project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res 31:442–443

    Article  CAS  Google Scholar 

  • Coolen MJL, Cypionka H, Sass AM, Sass H, Overmann J (2002) Ongoing modification of Mediterranean Pleistocene sapropels mediated by prokaryotes. Science 296:2407–2410

    Article  CAS  Google Scholar 

  • Dalsgaard T, Canfield DE, Peterson J, Thamdrup B, Acuria-Gonzalez J (2003) Nitrogen production by the anammox reaction in the water column of Golfo Dulce Costa Rica. Nature 422:606–608

    Article  CAS  Google Scholar 

  • D’Hondt S, Rutherford S, Spivack AJ (2002) Metabolic activity of subsurface life in deep-sea sediments. Science 295:2067–2070

    Article  Google Scholar 

  • DeLong EF, Preston CM, Mincer T, Rich V, Hallam SJ, Frigaard NU, Martinez A, Sullivan MB, Edwards R, Brito BR, Chisholm SW, Karl DM (2006) Community genomics among stratified microbial assemblages in the ocean interior. Science 311:496–503

    Article  CAS  Google Scholar 

  • Dojka MA, Harris JK, Pace NR (2000) Expanding the known diversity and environmental distribution of uncultured phylogenetic division of bacteria. Appl Environ Microbiol 66:1617–1621

    Article  CAS  Google Scholar 

  • Ducklow HW, Smith DC, Campbell L, Landry MR, Quinby HL, Steward GF, Azam F (2001) Heterotrophic bacterioplankton in the Arabian Sea: basin wise response to year round high primary productivity. Deep Sea Res II 48:1303–1323

    Article  Google Scholar 

  • Dunbar J, Takala S, Barns SM, Davis JA, Kuske CR (1999) Levels of bacterial community diversity in four arid soils compared by cultivation and 16S rRNA gene cloning. Appl Environ Microbiol 65:1662–1669

    CAS  Google Scholar 

  • Fang J, Shizuka A, Kato C, Schouten S (2006) Microbial diversity of cold-seep sediments in Sagami Bay Japan as determined by 16S rRNA gene and lipid analyses. FEMS Microbiol Ecol 57:429–441

    Article  CAS  Google Scholar 

  • Farrelly V, Rainey FA, Stackebrandt E (1995) Effect of genome size and rrn copy number on PCR amplification of 16S rRNA genes from a mixture of bacterial species. Appl Environ Microbiol 61:2798–2801

    CAS  Google Scholar 

  • Freitag TE, Prosser JI (2004) Differences between Betaproteobacterial ammonia-oxidizing communities in marine sediments and those in overlying water. Appl Environ Microbiol 70:3789–3793

    Article  CAS  Google Scholar 

  • Fuchs B, Woebken MD, Zubkov MV, Burkill P, Amman R (2005) Molecular identification of picoplankton populations in contrasting waters of Arabian Sea. Aquat Microb Ecol 39:145–157

    Article  Google Scholar 

  • Fuhrman JA, Davis AA (1997) Widespread Archaea and novel bacteria from the deep sea as shown by 16S rRNA gene sequences. Mar Ecol Prog Ser 150:275–285

    Article  Google Scholar 

  • Giovannoni SJ, Britschgi TB, Moyer CL, Field KG (1990) Genetic diversity in Sargasso Sea bacterioplankton. Nature 345:60–63

    Article  CAS  Google Scholar 

  • Glockner FO, Kube M, Bauer M, Teeling H, Lombardot T, Ludwig W, Gade D, Beck A, Borzym K, Heitmann K, Rabus R, Schlesner H, Amann R, Reinhardt R (2003) Complete genome sequence of marine Planctomycete Pirellula sp. Strain 1. Proc Natl Acad Sci USA 100:8298–8303

    Article  CAS  Google Scholar 

  • Gray JP, Herwig RP (1996) Phylogenetic analysis of bacterial communities in marine sediments. Appl Environ Microbiol 62:4049–4059

    CAS  Google Scholar 

  • Gupta RS (2000) The phylogeny of Proteobacteria: relationships to other eubacterial phyla and eukaryotes. FEMS Microbiol Rev 24:367–402

    Article  CAS  Google Scholar 

  • Hamersley MR, Lavik G, Woebken D, Rattray JE, Lam P, Hopmans EC, Damste JSS, Kruger S, Graco M, Gutierrez D, Kuypers MMM (2007) Anaerobic ammonium oxidation in the Peruvian oxygen minimum zone. Limnol Oceanogr 52:923–933

    Article  CAS  Google Scholar 

  • Harris JK, Kelley ST, Pace NR (2004) New perspective on uncultured bacterial phylogenetic division OP11. Appl Environ Microbiol 70:845–849

    Article  CAS  Google Scholar 

  • Hedges JI, Baldock JA, Gellnas Y, Lee C, Peterson M, Wakeham SG (2001) Evidence for non-selective preservation of organic matter in sinking marine particles. Nature 409:801–804

    Article  CAS  Google Scholar 

  • Hedlund BP, Gosink JJ, Staley JT (1997) Verrucomicrobia div.nov. a new division of the bacteria containing three new species of Prosthecobacter. Anton Leeuw Int J G 72:29–38

    Article  CAS  Google Scholar 

  • Helly J, Levin LA (2004) Global distribution of naturally occurring marine hypoxia on continental margins. Deep Sea Res I 51:1159–1168

    Article  CAS  Google Scholar 

  • Hugenholtz P, Pitulle C, Hershberger KL, Pace NR (1998) Novel division level bacterial diversity in a Yellowstone hot spring. J Bacteriol 180:366–376

    CAS  Google Scholar 

  • Jackson T, Ramaley J, Meinschein WG (1973) Thermomicrobium a new genus of extremely thermophillic bacteria. Int J Syst Bacteriol 23:28–36

    Article  Google Scholar 

  • Kamykowski DZ, Zentera SJ (1990) Hypoxia in the world ocean as recorded in the historical data set. Deep Sea Res 37:1861–1874

    Article  CAS  Google Scholar 

  • Karisiddaiah SM, Borole DV, Rao BR, Paropkari AL, Joao HM, Muralidhar K, Sarkar GP, Biswas G, Kumar Narendra (2006) Studies on the pore water sulphate, chloride and sedimentary methane to understand the sulphate reduction process in eastern Arabian Sea. Curr Sci India 91:54–60

    CAS  Google Scholar 

  • Kirchman DL (2002) The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMS Microbiol Ecol 39:91–100

    CAS  Google Scholar 

  • Knittel K, Boetius A, Lemke A, Eilers H, Lochte K, Pfannkuche O, Linke P, Amman R (2003) Activity distribution and diversity of sulphate reducers and other bacteria in sediments above gas hydrate (Cascadia Margin Oregon). Geomicrobiol J 20:269–294

    Article  CAS  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinfor 5:150–163

    Article  CAS  Google Scholar 

  • Kuypers MMM, Sliekers AO, Lavik G, Schmid M, Jorgensen BB, Kuenen JG, Sinninghe Damste JS, Strous M, Jetten MS (2003) Anaerobic ammonium oxidation by anaerobic bacteria in the Black Sea. Nature 422:608–611

    Article  CAS  Google Scholar 

  • Kuypers MMM, Lavik G, Woebken D, Schmidt M, Fuchs BM, Amann R, Jorgensen BB, Jetten MSM (2005) Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation. Proc Natl Acad Sci 102:6478–6483

    Article  CAS  Google Scholar 

  • Liao L, Xu X, Wang C, Zhang D, Wu M (2009) Bacterial and archaeal communities in the surface sediment from the northern slope of the South China Sea. J Zhejiang Univ Sci B 10:890–901

    Google Scholar 

  • Liu X, Tiquia SM, Holguin G, Wu L, Nold SC, Devol AH, Luo K, Palumbo AV, Tiedje JM, Zhou J (2003a) Molecular diversity of denitrifying genes in continental margin sediments within the oxygen deficient zone off the Pacific coast of Mexico. Appl Environ Microbiol 69:3549–3560

    Article  CAS  Google Scholar 

  • Liu X, Bagwell CE, Wu L, Devol AH, Zhou J (2003b) Molecular diversity of sulfate reducing bacteria from two different continental margin habitats. Appl Environ Microbiol 69:6073–6081

    Article  CAS  Google Scholar 

  • Lopez-Garcia P, Lopez-Lopez A, Moreira D, Rodriguez-Valera F (2001) Diversity of free-living prokaryotes from a deep-sea site at the Antarctic Polar Front. FEMS Microbiol Ecol 36:193–202

    Article  CAS  Google Scholar 

  • Lopez-Garcia P, Duperron S, Philippot P, Foriel J, Susini J, Moreira D (2003) Bacterial diversity in hydrothermal sediment and Epsilonproteobacterial dominance in experimental microcolonizers at the Mid-Atlantic Ridge. Environ Microbiol 5:961–976

    Article  CAS  Google Scholar 

  • Losekann T, Knittel K, Nadalig T, Fuchs B, Niemann H, Boetius A, Amann R (2007) Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby mud volcano Barents Sea. Appl Environ Microbiol 73:3348–3362

    Article  Google Scholar 

  • Ludwig W, Bauer SH, Bauer M, Held I, Kirchhof G (1997) Detection and in situ identification of representatives of a widely distributed new bacterial phylum. FEMS Microbiol Lett 153:181–190

    Article  CAS  Google Scholar 

  • Martin-Cuadrado A, Lopez-Garcia P, Alba J, Moreira D, Monticelli L, Strittmatter A, Gottschalk G, Rodriguez-Valera F (2007) Metagenomics of the Deep Mediterranean a warm bathypelagic habitat. PLoS ONE 9:1–15

    Google Scholar 

  • Maymo-Gatell X, Tandoi V, Gosset JM, Zinder SH (1995) Characterization of an H2-utilizing enrichment culture that reductively dechlorinates tetrachloroethene to vinyl chloride and ethane in the absence of methanogenesis and acetogenesis. Appl Environ Microbiol 61:3928–3933

    CAS  Google Scholar 

  • Molina V, Ulloa O, Farias L, Urrutia H, Salvador R, Junier P, Witzel KP (2007) Ammonia-oxidizing Betaproteobacteria from the oxygen minimum zone off Northern Chile. Appl Environ Microbiol 73:3547–3555

    Article  CAS  Google Scholar 

  • Morasch B, Richnow HH, Schink B, Meckenstock RU (2001) Stable hydrogen and carbon isotope fractionation during microbial toluene degradation: mechanistic and environmental aspects. Appl Environ Microbiol 67:4842–4849

    Article  CAS  Google Scholar 

  • Morris RM, Rappe MS, Urbach E, Connon SA, Giovannoni SJ (2004) Prevalence of the Chloroflexi-related SAR202 bacterioplankton cluster throughout the mesopelagic zone and deep ocean. Appl Environ Microbiol 70:2836–2842

    Article  CAS  Google Scholar 

  • Musat N, Werner U, Knittel K, Kolb S, Dodenhof T, r Dirk JEE, Dublier N, Amann R (2006) Microbial community structure of sandy intertidal sediments in the North Sea Sylt-Romo Basin Wadden Sea. Syst Appl Microbiol 29:333–348

    Article  Google Scholar 

  • Orcutt B, Joye SB, Kleindienst S, Knittel K, Ramette A, Reitz A, Samarkin V, Treude T, Boetius A (2010) Impact of natural oil and higher hydrocarbons on microbial diversity distribution and activity in Gulf of Mexico cold seep sediments. Deep-sea Res II, Top Stud Oceanogr 57:2008–2021

    Article  CAS  Google Scholar 

  • Pace NR, Stahl DA, Lane DJ, Olsen GJ (1986) The analysis of natural microbial populations by ribosomal RNA sequences. Adv Microb Ecol 9:1–55

    CAS  Google Scholar 

  • Paropkari AL, Prakash Babu C, Mascarenhas A (1993) New evidence for enhanced preservation of organic carbon in contact with oxygen minimum zone on the western continental slope of India. Mar Geol 111:7–13

    Article  CAS  Google Scholar 

  • Polymenakou PN, Bertilsson S, Tselepides A, Stephanou EG (2005) Bacterial community composition in different sediments from the eastern Mediterranean Sea: a comparison of four 16S ribosomal DNA clone libraries. Microb Ecol 50:447–462

    Article  CAS  Google Scholar 

  • Quaiser A, Ochsenreiter T, Lanz C, Schuster SC, Alexander HT, Eck J, Schleper C (2008) Acidobacteria form a coherent but highly diverse group within the bacterial domain: evidence from environmental genomics. Mol Microbiol 50:563–575

    Article  Google Scholar 

  • Ramaiah N, Raghukumar S, Gauns M (1996) Bacterial abundance and production in the Central and Eastern Arabian Sea. Curr Sci India 71:878–882

    Google Scholar 

  • Ravenschlag K, Sahm K, Pernthaler J, Amann R (1999) High bacterial diversity in permanently cold marine sediments. Appl Environ Microbiol 65:3982–3989

    CAS  Google Scholar 

  • Riemann L, Steward GF, Fandino LB, Campbell L, Landry MR, Azam F (1999) Bacterial community composition during two consecutive NE Monsoon periods in the Arabian Sea studied by denaturing gradient gel electrophoresis (DGGE) of rRNA genes. Deep-Sea Res II 46:1791–1811

    Article  Google Scholar 

  • Schaefer KM, Ferdelman TG, Fossing H, Muyzer G (2007) Microbial diversity in deep sediments of the Benguela upwelling system. Aquat Microb Ecol 50:1–9

    Article  Google Scholar 

  • Schippers A, Neretin LN (2006) Quantification of microbial communities in near-surface and deeply buried marine sediments on the Peru continental margin using real-time PCR. Environ Microbiol 8:1251–1260

    Article  CAS  Google Scholar 

  • Schloss PD, Handelsman J (2005) Status of the microbial census. Microbiol Mol Biol Rev 68:686–691

    Article  Google Scholar 

  • Singleton DR, Furlong MA, Rathburn SL, Whitman WB (2001) Quantitative comparisons of 16S rRNA gene sequence libraries from environmental samples. Appl Environ Microbiol 67:4374–4376

    Article  CAS  Google Scholar 

  • Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, Arrieta JM, Herndl GJ (2006) Microbial diversity in the deep sea and the underexplored ‘rare biosphere’. Proc Natl Acad Sci 103:12115–12120

    Article  CAS  Google Scholar 

  • Sorensen KB, Lauer A, Teske A (2004) Archeal phylotypes in a metal rich and low activity deep subsurface sediment of the Peru Basin ODP Leg 201 Site 1231. Geobiol 2:151–161

    Article  CAS  Google Scholar 

  • Stackebrandt E, Goebel BM (1994) A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849

    Article  CAS  Google Scholar 

  • Stevens H, Ulloa O (2008) Bacterial diversity in the oxygen minimum zone of the Eastern Tropical South Pacific. Environ Microbiol 10:1244–1259

    Article  CAS  Google Scholar 

  • Stramma L, Johnson GC, Sprintall J, Mohrholz V (2008) Expanding oxygen minimum zones in the oceans. Science 320:655–658

    Article  CAS  Google Scholar 

  • Strous M, Kuenen JG, Jetten MSM (1999) Key physiology of anaerobic ammonium oxidation. Appl Environ Microbiol 65:3248–3250

    CAS  Google Scholar 

  • Thamdrup B, Dalsgaard T, Jensen MM, Ulloa O, Farias L, Escribano R (2006) Anaerobic ammonium oxidation in the oxygen deficient waters off northern Chile. Limnol Oceanogr 51:2145–2156

    Article  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL X windows interphase: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  Google Scholar 

  • Urakawa H, Kita-Tsukamoto K, Ohwada K (1999) Microbial diversity in marine sediments from Sagami Bay and Tokyo Bay Japan as determined by 16S rRNA gene analysis. Microbiology 145:3305–3315

    CAS  Google Scholar 

  • Urakawa H, Yoshida T, Nishimura M, Ohwada K (2000) Characterization of depth related population variation in microbial communities of coastal marine sediment using 16S rDNA based approaches and quinone profiling. Environ Microbiol 2:542–554

    Article  CAS  Google Scholar 

  • von Stackelberg U (1972) Sediment facies of the Indian-Pakistan continental margin. Indian Ocean Exped C9:1–73

    Google Scholar 

  • Ward BB, Devol AH, Rich JJ, Chang BX, Bulow SE, Naik H, Pratihary A, Jayakumar A (2009) Denitrification as the dominant nitrogen loss process in the Arabian Sea. Nature 461:78–82

    Article  CAS  Google Scholar 

  • Wegener G, Shovitri M, Knittel K, Niemann H, Hovland M, Boetius A (2008) Biogeochemical processes and microbial diversity of the Gullfaks and Tommeliten methane seeps (Northern North Sea). Biogeosci. Discuss 5:1127–1144

    CAS  Google Scholar 

  • Woebken D, Lam P, Kuypers MMM, Naqvi SWA, Kartal B, Strous M, Jetten MSM, Fuchs BM, Amann R (2008) A microdiversity study of anammox bacteria reveals a novel Candidatus Scalindua phylotype in marine oxygen minimum zones. Environ Microbiol 10:3106–3119

    Article  CAS  Google Scholar 

  • Wyrtki K (1971) Oceanographic atlas of the International Indian Ocean Expedition. National Science Foundation publication OCE/NSF 86-00-001, Washington, DC, 531 pp

  • Yakimov MM, Giuliano L, Crisafi E, Chernikova TN, Timmis KN, Golyshin PN (2002) Microbial community of a saline mud volcano at San Biagio-Belpaso Mt. Etna (Italy). Environ Microbiol 4:249–256

    Article  CAS  Google Scholar 

  • Yakimov MM, Denaro R, Genovese M, Cappello S, D’Auria G, Chernikova TN, Timmis KN, Golyshin PN, Giluliano L (2005) Natural microbial diversity in superficial sediments of Milazzo Harbor (Sicily) and community successions during microcosm enrichment with various hydrocarbons. Environ Microbiol 7:1426–1441

    Article  CAS  Google Scholar 

  • Zhang W, Ki JS, Qian PY (2008) Microbial diversity in polluted harbor sediments I: Bacterial community assessment based on four clone libraries of 16S rDNA. Estuar Coast Shelf Sci 76:668–681

    Article  Google Scholar 

  • Zhou M, Gomez-Sanchez CE (2000) Universal TA cloning. Curr Issues Mol Biol 2:1–7

    CAS  Google Scholar 

  • Zhou J, Bruns MA, Tiedje JM (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol 62:316–322

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. David Kirchman (University of Delaware, USA) for his invaluable suggestions and Dr. C. T. Achuthankutty, Consultant, National Centre for Antarctic Ocean Research (NCAOR), Goa for critically reading the manuscript. We thank Drs. Hemant J. Purohit and Atya Kapley (NEERI, CSIR, India) for their valuable suggestions in the construction of genomic libraries during the initial stages of this work. We are grateful to the captain and crew members of ORV Sagar Sampada for their help during the cruise. The financial support for the project “System Analyses of OMZ: A polyphasic approach” by the Central Marine Living Resources and Ecology (CMLRE), Kochi and laboratory facilities of Marine Microbial Reference Facility (COMAPS) of NIO RC, Kochi, funded by the Ministry of Earth Sciences, New Delhi are acknowledged. We duly acknowledge the valuable scientific comments of the two anonymous reviewers which has considerably improved the quality of the revised manuscript. BD thanks Council of Scientific and Industrial Research, New Delhi, for the award of Senior Research Fellowship. This is NIO contribution no. 4967.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanta Nair.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Divya, B., Parvathi, A., Loka Bharathi, P.A. et al. 16S rRNA-based bacterial diversity in the organic-rich sediments underlying oxygen-deficient waters of the eastern Arabian Sea. World J Microbiol Biotechnol 27, 2821–2833 (2011). https://doi.org/10.1007/s11274-011-0760-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-011-0760-0

Keywords

Navigation