Skip to main content
Log in

Summing up particular features of protein secretion in Streptomyces lividans

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In recent years much attention has been given to the identification and characterisation of the key elements of the secretory machinery of Streptomyces lividans, a non-pathogenic filamentous Gram-positive soil bacterium, whose metabolism is relatively well characterised and capable of secreting large amounts of proteins when grown in laboratory conditions. The relevance of S. lividans from a commercial standpoint is due to its potential usefulness for the overproduction of secretory homologous and heterologous proteins of interest. Therefore, this review focuses on the knowledge already obtained on the S. lividans secretion pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Anné J, Mellaert LV (1993) Streptomyces lividans as a host for heterologous protein production. FEMS Microbiol Lett 114:121–128

    Article  Google Scholar 

  • Beck K, Wu LF, Brunner J, Muller M (2000) Discrimination between SRP- and SecA/SecB-dependent substrates involves selective recognition of nascent chains by SRP and trigger factor. EMBO J 19:134–143

    Article  CAS  Google Scholar 

  • Beha D, Deitermann S, Müller M, Koch H-G (2003) Export of beta-lactamase is independent of the signal recognition particle. J Biol Chem 278:22161–22167

    Article  CAS  Google Scholar 

  • Bendtsen JD, Nielsen H, Widdick D, Palmer T, Brunak S (2005) Prediction of twin-arginine signal peptides. BMC Bioinf 6:167–175

    Article  Google Scholar 

  • Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL et al (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147

    Article  Google Scholar 

  • Berks BC (1996) A common export pathway for proteins binding complex redox cofactors? Mol Microbiol 22:393–404

    Article  CAS  Google Scholar 

  • Berks BC, Sargent F, Palmer T (2000) The Tat protein export pathway. Mol Microbiol 35:260–274

    Article  CAS  Google Scholar 

  • Bibi E, Herskovits AA, Bochkareva E, Zelazny A (2001) Putative integral membrane SRP receptors. Trend Biochem Sci 26:15–16

    Article  CAS  Google Scholar 

  • Binnie C, Cossar JD, Stewart DI (1997) Heterologous biopharmaceutical protein expression in Streptomyces. Trend Biotechnol 15:315–320

    Article  CAS  Google Scholar 

  • Blanco J, Driessen AJ, Coque JJ, Martínn JF (1998) Biochemical characterization of the SecA protein of Streptomyces lividans interaction with nucleotides, binding to membrane vesicles and in vitro translocation of proAmy protein. Eur J Biochem 257:472–478

    Article  CAS  Google Scholar 

  • Böhni PC, Deshaies RJ, Schekman RW (1988) SEC11 is required for signal peptide processing and yeast cell growth. J Cell Biol 106:1035–1042

    Article  Google Scholar 

  • Bunai K, Takamatsu H, Horinaka T, Oguro A, Nakamura K, Yamane K (1996) Bacillus subtilis Ffh, a homologue of mammalian SRP54, can intrinsically bind to the precurssors of secretory proteins. Biochem Biophys Res Commun 227:762–767

    Article  CAS  Google Scholar 

  • Bunai K, Yamada K, Hayashi K, Nakamura K, Yamane K (1999) Enhancing effect of Bacillus subtilis Ffh, a homologue of the SRP54 subunit of the mammalian signal recognition particle, on the binding of SecA to precursors of secretory proteins in vitro. J Biochem 125:151–159

    CAS  Google Scholar 

  • Cao T, Saier M (2003) The general protein secretory pathway: phylogenetic analyses leading to evolutionary conclusions. Biochim Biophys Acta 1609:115–125

    Article  CAS  Google Scholar 

  • Chater KF (1998) Taking a genetic scalpel to the Streptomyces colony. Microbiology 144:1465–1478

    Article  CAS  Google Scholar 

  • Chater KF, Biró S, Lee KJ, Palmer T, Schrempf H (2010) The complex extracellular biology of Streptomyces. FEMS Microbiol Rev 34:171–198

    Article  CAS  Google Scholar 

  • Cregg KM, Wilding I, Black MT (1996) Molecular cloning and expression of the spsB gene encoding an essential type I signal peptidase from Staphylococus aureus. J Bacteriol 178:5712–5718

    CAS  Google Scholar 

  • Dalbey RE, Wickner W (1985) Leader peptidase catalyzes the release of exported proteins from the outer surface of the Escherichia coli plasma membrane. J Biol Chem 260:15925–15931

    CAS  Google Scholar 

  • Dalbey RE, Lively MO, Bron S, van Dijl JM (1997) The chemistry and enzymology of the type I signal peptidases. Protein Sci 6:1129–1138

    Article  CAS  Google Scholar 

  • de Gier JW, Mansournia P, Valent QA, Phillips GJ, Luirink J, von Heijne G (1996) Assembly of a cytoplasmic membrane protein in Escherichia coli is dependent on the signal recognition particle. FEBS Lett 399:307–309

    Article  Google Scholar 

  • Dilks K, Rose RW, Hartmann E, Pohlschröder M (2003) Prokaryotic utilization of the twin-arginine translocation pathway: a genomic survey. J Bacteriol 185:478–1483

    Article  Google Scholar 

  • Dilks K, Giménez MI, Pohlschröder M (2005) Genetic and biochemical analysis of the twin-arginine translocation pathway in halophilic archaea. J Bacteriol 187:8013–8104

    Article  Google Scholar 

  • Driessen AJ, Nouwen N (2008) Protein translocation across the bacterial cytoplasmic membrane. Annu Rev Biochem 77:643–667

    Article  CAS  Google Scholar 

  • Escutia MR, Val G, Palacín A, Geukens N, Anné J, Mellado RP (2006) Compensatory effect of the minor Streptomyces lividanstype I signal peptidases on the SipY major signal peptidase deficiency as determined by extracellular proteome analysis. Proteomics 6:4137–4146

    Article  CAS  Google Scholar 

  • Fekkes P, Driessen AJM (1999) Protein targeting to the bacterial cytoplasmic membrane. Microbiol Mol Rev 63:161–173

    CAS  Google Scholar 

  • Gilbert M, Morosoli R, Shareck F, Kluepfel D (1995) Production and secretion of proteins by streptomycetes. Crit Rev Biotechnol 15:13–19

    Article  CAS  Google Scholar 

  • Herscovits AA, Bochkareva E, Bibi E (2000) New prospects in studying the bacterial signal recognition particle pathway. Mol Microbiol 38:927–939

    Article  Google Scholar 

  • Hirose I, Sano K, Shioda I, Kumano M, Nakamura K, Yamane K (2000) Proteome analysis of Bacillus subtilis extracellular proteins: a two-dimensional protein electrophoretic study. Microbiology 146:65–75

    CAS  Google Scholar 

  • Hoang V, Hofemeister J (1995) Bacillus amyloliquefaciens possesses a second type I signal peptidase with extensive sequence similarity to other Bacillus SPases. Biochim Biophys Acta 1269:64–68

    Article  Google Scholar 

  • Isiegas C, Parro V, Mellado RP (1999) Streptomyces lividansas a host to produce and secrete Escherichia coli TEM β-lactamase. Lett Appl Microbiol 28:321–326

    Article  CAS  Google Scholar 

  • Jongbloed JD, Grieger U, Antelmann H, Hecker M, Nijland R, Bron S, van Dijl JM (2004) Two minimal Tat translocases in Bacillus. Mol Microbiol 545:1319–1325

    Article  Google Scholar 

  • Kaneko T, Sato S, Kotani H, Tanaka A et al (1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions (supplement). DNA Res 3:185–209

    Article  CAS  Google Scholar 

  • Keenan RJ, Freymann DM, Stroud RM, Walter P (2001) The signal recognition particle. Annu Rev Biochem 70:755–775

    Article  CAS  Google Scholar 

  • Klenk HP, Clayton RA, Tomb JF, White O et al (1997) The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature 390:364–370

    Article  CAS  Google Scholar 

  • Kunst F, Ogasawara N, Moszer I, Albertini AM, et al. (1997) The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. 390:249–256

  • Lammertyn E, Mellaert LV, Schacht S, Dillen C, Sablon E, Broekhoven AV, Anné J (1997) Evaluation of a novel a novel subtilisin inhibitor gene and mutant derivative for the expression of mouse tumor necrosis factor alpha by Streptomyces lividans. Appl Environ Microbiol 63:1808–1813

    CAS  Google Scholar 

  • Meijer WJ, de Jong A, Bea G, Wisman A, Tjalsma H, Venema G, Bron S, van Dijl JM (1995) The endogenous Bacillus subtilis (natto) plasmids pTA1015 and pTA1040 contain signal peptidase-encoding genes: identification of a new structural module on cryptic plasmids. Mol Microbiol 17:621–631

    Article  CAS  Google Scholar 

  • Miller JD, Bernstein HD, Walter P (1994) Interaction of E.coli Ffh/4.5 Sribonucleoprotein and FtsY mimics that of mammalian signal recognition particle and its receptor. Nature 366:351–354

    Article  Google Scholar 

  • Millman JS, Andrews DW (1999) A site-specific, membrane-dependent cleavage event defines the membrane binding domain of FtsY. J Biol Chem 274:33227–33234

    Article  CAS  Google Scholar 

  • Oguro A, Kakeshita H, Takamatsu H, Nakamura K, Yamane K (1996) The effect of Srb, a homologue of the mammalian SRP receptor alpha-subunit, on Bacillus subtilis growth and protein translocation. Gene 172:17–24

    Article  CAS  Google Scholar 

  • Palacín A, Parro V, Geukens N, Anné J, Mellado RP (2002) SipY is the Streptomyces lividanstype I signal peptidase exerting a major effect on protein secretion. J Bacteriol 184:4875–4880

    Article  Google Scholar 

  • Palacín A, de la Fuente R, Valle I, Rivas LA, Mellado RP (2003) Streptomyces lividans contains a minimal functional signal recognition particle that is involved in protein secretion. Microbiology 149:2435–2442

    Article  Google Scholar 

  • Pallen MJ (2002) The ESAT-6/WXG100 superfamily and a new gram-positive secretion system? Trends Microbiol 10:209–212

    Article  CAS  Google Scholar 

  • Palomino C, Mellado RP (2005) The Streptomyces lividans signal recognition particle receptor FtsY is involved in protein secretion. J Mol Microbiol Biotechnol 9:57–62

    Article  CAS  Google Scholar 

  • Palomino C, Mellado RP (2008) Influence of a Streptomyces lividans SecG functional analogue on protein secretion. Int Microbiol 11:25–31

    CAS  Google Scholar 

  • Parro V, Mellado RP (1994) Effect of glucose on agarase overproduction by Streptomyces. Gene 145:49–55

    Article  CAS  Google Scholar 

  • Parro V, Schacht S, Anné J, Mellado RP (1999) Four genes encoding different type I signal peptidases are organized in a cluster in Streptomyces lividans TK21. Microbiology 145:2255–2263

    CAS  Google Scholar 

  • Pohlschöder M, Dilks K, Hand N, Wesley Rose R (2004) Translocation of proteins across archaeal cytoplasmic membranes. FEMS Microbiol Rev 28:3–24

    Article  Google Scholar 

  • Pop O, Martin U, Abel C, Muller JP (2002) The twin-arginine signal peptide of PhoD and the TatAd/Cd proteins of Bacillus subtilis form an autonomous Tat translocation system. J Biol Chem 277:3268–3273

    Article  CAS  Google Scholar 

  • Powers T, Walter P (1997) Co-translational protein targeting catalised by the Escherichia coli signal recognition particle and its receptor. EMBO J 16:4880–4886

    Article  CAS  Google Scholar 

  • Schaerlaekens K, Van Mellaert L, Lammertyn E, Geukens N, Anné J (2004) The importance of the Tat-dependent protein secretion pathway in Streptomyces as revealed by phenotypic changes in tat deletion mutants and genome análisis. Microbiology 150:21–31

    Article  CAS  Google Scholar 

  • Song W, Raden D, Mandon E, Gilmore R (2000) Role of Sec61α in the regulated transfer of the ribosome-nascent chain complex from the signal recognition particle to the translocation channel. Cell 100:333–343

    Article  CAS  Google Scholar 

  • Stanley NR, Palmer T, Berks BC (2000) The twin-arginine consensus motif of Tat signal peptides is involved in Sec-independent protein targeting in Escherichia coli. J Biol Chem 275:11591–11596

    Article  CAS  Google Scholar 

  • Tjalsma H, Bolhuis A, van Roosmalen ML, Wiegert T, Schumann W, Broekhizen CP, Quax WJ, Venema G, Bron S, van Dijl JM (1998) Functional analysis of the secretory precursor processing machinery of Bacillus subtilis: identification of a eubacterial homolog of archaeal and eukaryotic signal peptidases. Genes and Dev 12:2318–2331

    Article  CAS  Google Scholar 

  • Tschantz WR, Sung M, Delgado-Partin VM, Dalbey R (1993) A serine and a lysine residue implicated in the catalytic mechanims of the Escherichia coli leader peptidase. J Biol Chem 268:27349–27354

    CAS  Google Scholar 

  • Ulbrandt ND, Newitt JA, Bernstein HD (1997) The E. coli signal recognition particle is required for the insertion of a subset of inner membrane proteins. Cell 88:187–196

    Article  CAS  Google Scholar 

  • van Dijl JM, de Jong A, Venema G, Bron S (1995) Identification of the potential active site of the SPase SipS of Bacillus subtilis: structural and functional similarities with LexA-like proteases. J Biol Chem 270:3611–3618

    Article  Google Scholar 

  • Van Mellaert L, Anné J (1994) Protein secretion in gram-positive bacteria with high GC- content. Recent Res Dev Microbiol 3:324–340

    Google Scholar 

  • Van Welly KHM, Swaving J, Freudl A, Driessen AJM (2001) Translocation of proteins across the cell envelope of Gram-positive bacteria. FEMS Microbiol Rev 25:437–454

    Google Scholar 

  • Van Wely KHM, Swaving J, Broekhuizen CP, Rose M, Quax WJ, Driessen AJM (1999) Functional identification of the product of the Bacillus subtilis yvaL gene as a SecG homologue. J Bacteriol 181:1786–1792

    Google Scholar 

  • Vrancken K, Anné J (2009) Secretory production of recombinant proteins by Streptomyces. Future Microbiol 4:181–188

    Article  CAS  Google Scholar 

  • Walter P, Johnson AE (1994) Signal sequence recognition and protein targeting to the endoplasmic reticulum membrane. Annu Rev Cell Biol 10:87–119

    Article  CAS  Google Scholar 

  • White O, Eisen JA, Heidelberg JF, Hickey EK et al (1999) Genome sequence of the radioresistant bacterium Deinococus radiodurans R1. Science 286:1571–1577

    Article  CAS  Google Scholar 

  • Widdick DA, Dilks K, Chandra G, Bottrill A, Naldrett M, Pohlschröder M, Palmer T (2006) The twin-arginine translocation pathway is a major route of protein export in Streptomyces coelicolor. Proc Natl Acad Sci USA 103:17927–17932

    Article  CAS  Google Scholar 

  • Wolin SL (1994) From the elephant to E. coli: SRP-dependent protein targeting. Cell 77:787–790

    Article  CAS  Google Scholar 

  • Wu CJ, Janssen GR (1996) Translation of vph mRNA in Streptomyces lividans and Escherichia coli after removal of 5′ untranslated leader. Mol Microbiol 22:339–355

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Grants BIO2003-03948 and BIO2006-12762 from the Spanish Ministry of Science and Innovation have supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael P. Mellado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mellado, R.P. Summing up particular features of protein secretion in Streptomyces lividans . World J Microbiol Biotechnol 27, 2231–2237 (2011). https://doi.org/10.1007/s11274-011-0709-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-011-0709-3

Keywords

Navigation