Skip to main content

Advertisement

Log in

Na+-stimulated nitrate uptake with increased activity under osmotic upshift in Synechocystis sp. strain PCC 6803

  • Short Communication
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In the non-diazotrophic cyanobacterium Synechocystis sp. strain PCC 6803, an osmolality of 30 and 40 mosmol/kg sorbitol and NaCl resulted in 3.5- and 4.5-fold increase of nitrate uptake, respectively. The NaCl-stimulated uptake was abolished by treatment with chloramphenicol. At 25 mosmol/kg or higher, NaCl induced higher nitrate uptake than sorbitol suggesting an ionic effect of Na+. The nitrate uptake in Synechocystis showed K s and V max values of 46 μM and 1.37 μmol/min/mg Chl, respectively. Mutants disrupted in nitrate and nitrite reductase exhibited a decreased nitrate uptake. Ammonium, chlorate, and dl-glyceraldehyde caused a reduction of nitrate uptake. Dark treatment caused a drastic reduction of uptake by 70% suggesting an energy-dependent system. Nitrate transport was sensitive to various metabolic inhibitors including those dissipating proton gradients and membrane potential. The results suggest that nitrate uptake in Synechocystis is stimulated by Na+ ions and requires energy provided by the functioning electron transport chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Bagchi SN, Rai UN, Rai AN, Singh HN (1985) Nitrate metabolism in the cyanobacterium Anabaena cycadeae: regulation of nitrate uptake and reductase by ammonia. Physiol Plan 63:322–326

    Article  CAS  Google Scholar 

  • Burhenne N, Tischner R (2000) Isolation and characterization of nitrite reductase-deficient mutants of Chlorella sorokiniana (strain 211–8 k). Planta 211:440–445

    Article  CAS  Google Scholar 

  • Daniel-Vedele F, Filleur S, Caboche M (1998) Nitrate transport:a key step in nitrate assimilation. Curr Opin Plant Biol 1:235–239

    Article  CAS  Google Scholar 

  • Eaton-Rye JJ (2004) The construction of gene knockouts in the cyanobacterium Synechocystis sp. PCC 6803. In: Carpentier R (ed) Photosynthesis research protocol. Human Press, New Jersey, pp 309–324

    Chapter  Google Scholar 

  • Flores E, Herrero A (1994) Assimilatory nitrogen metabolism and its regulation. In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer Academic Publishers, Dordrecht, pp 487–517

    Google Scholar 

  • Flores E, Herrero A (2005) Nitrogen assimilation and nitrogen control in cyanobacteria. Biochem Soc Trans 33:164–167

    Article  CAS  Google Scholar 

  • Flores E, Guerrero MG, Losada M (1983) Photosynthetic nature of nitrate uptake and reduction in the cyanobacterium Anacystis nidulans. Biochim Biophys Acta 722:408–416

    Article  CAS  Google Scholar 

  • Galván A, Quesada A, Fernández E (1996) Nitrate and nitrite are transported by different specific transport systems and by a bi-specific transporter in Chlamydomonas reinhardtii. J Biol Chem 271:2088–2092

    Article  Google Scholar 

  • Incharoensakdi A (2006) Nitrogen metabolism in cyanobacteria under osmotic stress. In: Rai AK, Takabe T (eds) Abiotic stress tolerance in plants. Springer, Dordrecht, pp 195–212

    Chapter  Google Scholar 

  • Incharoensakdi A, Laloknam S (2005) Nitrate uptake in the halotolerant cyanobacterium Aphanothece halophytica is energy-dependent driven by ΔpH. J Biochem Mol Biol 38:468–473

    Article  CAS  Google Scholar 

  • Incharoensakdi A, Wangsupa J (2003) Nitrate uptake by the halotolerant cyanobacterium Aphanothece halophytica grown under non-stress and salt-stress conditions. Curr Microbiol 47:255–259

    Article  CAS  Google Scholar 

  • Knobloch O, Tischner R (1989) Characterization of nitrate reductase-deficient mutants of Chlorella sorokiniana. Plant Physiol 89:786–791

    Article  CAS  Google Scholar 

  • Kronzucker HJ, Glass ADM, Siddiqi MY (1999) Inhibition of nitrate uptake by ammonium in barley: analysis of component fluxes. Plant Physiol 120:283–291

    Article  CAS  Google Scholar 

  • Lara C, Romero JM, Guerrero MG (1987) Regulated nitrate transport in the cyanobacterium Anacystis nidulans. J Bacteriol 179:4376–4378

    Google Scholar 

  • Mackinney G (1941) Absorption of light by chlorophyll solution. J Biol Chem 140:315–322

    CAS  Google Scholar 

  • Meeks JC, Wycoff KL, Chapman JS, Enderlin CS (1983) Regulation of expression of nitrate and dinitrogen assimilation by Anabaena species. Appl Environ Microbiol 45:1351–1359

    CAS  Google Scholar 

  • Ohmori M, Ohmori K, Strotmann H (1977) Inhibition of nitrate uptake by ammonia in a blue-green alga, Anabaena cylindrica. Arch Microbiol 144:225–229

    Article  Google Scholar 

  • Omata T (1995) Structure, function and regulation of nitrate transport system of the cyanobacterium Synechococcus sp. PCC 7942. Plant Cell Physiol 36:207–213

    CAS  Google Scholar 

  • Omata T (1998) Transcriptional and post-translational regulation of nitrate utilization in the cyanobacterium Synechococcus sp. strain PCC 7942. In: Satoh K, Murata N (eds) Stress responses of photosynthetic organisms. Elsevier, Amsterdam, pp 197–214

    Google Scholar 

  • Omata T, Andriesse X, Hirano A (1993) Identification and characterization of a gene cluster involved in nitrate transport in the cyanobacterium Synechococcus sp. PCC 7942. Mol Gen Genet 236:193–202

    Article  CAS  Google Scholar 

  • Quesada A, Galván A, Fernández E (1994) Identification of nitrate transporter genes in Chlamydomonas reinhardtii. Plant J 5:407–419

    Article  CAS  Google Scholar 

  • Rai AK, Tiwari SP (1999) Mutants of the cyanobacterium Anabaena sp. PCC 7120 altered in nitrate transport and reduction. Curr Microbiol 39:237–243

    Article  CAS  Google Scholar 

  • Raksajit W, Mäenpää P, Incharoensakdi A (2006) Putrescine transport in a cyanobacterium Synechocystis sp. PCC 6803. J Biochem Mol Biol 39:394–399

    Article  CAS  Google Scholar 

  • Revilla E, Cejudo FJ, Llobell A, Paneque A (1986) Short-term ammonium inhibition of nitrate uptake by Azotobacter chroococcum. Arch Microbiol 144:187–190

    Article  CAS  Google Scholar 

  • Rodriguez R, Lara C, Guerrero MG (1992) Nitrate transport in the cyanobacterium Anacystis nidulans R2. Biochem J 282:639–643

    CAS  Google Scholar 

  • Rodriguez R, Kobayashi M, Omata T, Lara C (1998) Independence of carbon and nitrogen control in the post translational regulation of nitrate transport in the cyanobacterium Synechococcus sp. strain PCC 7942. FEBS Lett 432:207–212

    Article  CAS  Google Scholar 

  • Sakamoto T, Bryant DA (1999) Nitrate transport and not photoinhibition limits growth of the fresh water cyanobacterium Synechococcus species PCC 6301 at low temperature. Plant Physiol 119:785–794

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor, New York

    Google Scholar 

  • Tischner A, Schmidt A (1984) Light mediated regulation of nitrate assimilation in Synechococcus leopoliensis. Arch Microbiol 137:151–154

    Article  CAS  Google Scholar 

  • Unkles SE, Wang R, Wang Y, Glass ADM, Crawford NM, Kinghorn JR (2004) Nitrate reductase activity is required for nitrate uptake into fungal but not plant cells. J Biol Chem 279:28182–28186

    Article  CAS  Google Scholar 

  • Wood NJ, Alizadeh T, Richardson DJ, Ferguson SJ, Moir JW (2002) Two domains of a dual-function NarK protein are required for nitrate uptake, the first step of denitrification in Paracoccus pantotrophus. Mol Microbiol 44:157–170

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Royal Golden Jubilee Ph.D. program (PHD/0199/2549) and the 90th Anniversary of Chulalongkorn University Fund (Ratchadaphiseksomphote Endowment Fund, REF) to W. Baebprasert. The research grant by Commission on Higher Education (CHE), Thailand (the university staff development consortium) and the grant under The National Research University Project of CHE and REF (FW659A) to A. Incharoensakdi and the support by the Swedish Research Links program (project 348-2009-6486) are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aran Incharoensakdi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baebprasert, W., Karnchanatat, A., Lindblad, P. et al. Na+-stimulated nitrate uptake with increased activity under osmotic upshift in Synechocystis sp. strain PCC 6803. World J Microbiol Biotechnol 27, 2467–2473 (2011). https://doi.org/10.1007/s11274-011-0706-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-011-0706-6

Keywords

Navigation