Skip to main content

Advertisement

Log in

Screening, production, optimization and characterization of cyanobacterial polysaccharide

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Biotechnological applications of algal polysaccharide as emulsifiers, thickeners and laxatives have led to the screening and selection of certain diazotrophic filamentous cyanobacteria from saline/alkaline soil of Madhya Pradesh, India. Strain specific variation in cell bound, extracellular and total polysaccharide content was quantified under laboratory conditions. Among the cyanobacterial isolates examined Nostoc calcicola RDU-3 was found to produce highest amount (105 mg l−1) of extracellular polysaccharide on 44th day of growth under diazotrophic growth conditions. Extracellular polysaccharide production of cyanobacterium Nostoc calcicola RDU-3 was optimal at pH-10, temperature 35°C, photoperiod of 24 h and in white light. The Gas Chromatographic analysis of polysaccharide from Nostoc calcicola RDU-3 revealed the presence of ribose (36.03%), xylose (34.13%), rhamnose (29.67%) and glucose (4.0%). The polysaccharide is novel in that it possesses ribose as the predominant monosaccharide with very low levels of glucose. Predominance of ribose monosaccharide is the unique feature which is reported to be used as metabolic supplement to the heart. IR spectrum of extracellular polysaccharide revealed the presence of sulphate group. Such sulphated polysaccharide is reported to have antiviral properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Apte SK, Thomas J (1986) Membrane electrogenesis and sodium transport in filamentous nitrogen-fixing cyanobacteria. Eur J Biochem 154:395–401

    Article  CAS  Google Scholar 

  • Bender J, Phillips P (2004) Microbial mats for multiple applications in aquaculture and bioremediation. Biores Technol 94(3):229–238

    Article  CAS  Google Scholar 

  • Benett A, Bogorad L (1973) Complementary chromatic adaptation in a filamentous blue green algae. J Cell Biol 58:419–435

    Article  Google Scholar 

  • Bueno SM, Garcia-Cruz CH (2006) Optimization of polysaccharides production by bacteria isolated from soil. Braz J Microbiol 37:296–301

    Article  CAS  Google Scholar 

  • Cheng KC, Demirci A, Jeffrey C (2009) Effect of temperature, carbon source, yeast extract and pH on pullulan production by Aureobasidium pullulans. American Soci Agri Biol Eng, Reno, Nevada, June 21–24, 096033

  • De Philippis R, Margheri MC, Materassi R, Vincenzini M (1998) Potential of unicellular cyanobacteria from saline environments as exopolysaccharide producers. Appl Environ Microbiol 64:1130–1132

    Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rubers PA, Smith F (1956) Calorimetric method for determination of sugar and related substances. Analyt Chem 28:300–356

    Article  Google Scholar 

  • Filali Mouhim R, Cornet JF, Fontaine T, Fournet B, Dubertret G (1993) Production, isolation and preliminary characterization of the exopolysaccharide of the cyanobacterium Spirulina platensis. Biotechnol Lett 15:567–572

    Article  CAS  Google Scholar 

  • Freire-Nordi CS, Vieira AAH, Nascimento OR (2005) The metal binding capacity of Anabaena spiroides extracellular polysaccharide: an EPR study. Process Biochem 40:2215–2224

    Article  CAS  Google Scholar 

  • Hayashi T, Hayashi K (1996) Calcium spirulan, an inhibitor of enveloped virus replication, from a blue-green alga Spirulina platensis. J Nat Prod (Lloydia) 59:83–87

    Article  CAS  Google Scholar 

  • Hayashi K, Hayashi T, Kojima I (1996) A natural sulfated polysaccharide, calcium spirulan, isolated from Spirulina platensis: in vitro and ex vivo evaluation of antiherpes simplex virus and anti-human immunodeficiency virus activities. AIDS Res Hum Retroviruses 12:1463–1471

    Article  CAS  Google Scholar 

  • Henriques AWS, Jessouroun E, Lima EL, Alves TLM (2006) Capsular polysaccharide production by Neisseria meningitidis serogroup C: optimization of process variables using response surface methodology. Process Biochem 41(8):1822–1828

    Article  CAS  Google Scholar 

  • Herbert D, Phipps d Strange RE (1971a) Determination of protein. Methods Microbiol 5B:242–265

    Google Scholar 

  • Herbert D, Phipps d Strange RE (1971b) Chemical analysis of microbial cells. In: Norris JR, Ribbon DW (eds) Methods in microbiology. Academic Press, London, pp 209–234

    Google Scholar 

  • Horikoshi K (1991) Microorganisms in Alkaline Environments. VCH, New York

    Google Scholar 

  • Horikoshi K (1999) Alkaliphiles: some applications of their Products for Biotechnology. Microbiol Mol Biol Rev 63(4):735–750

    CAS  Google Scholar 

  • Huheihel M, Ishanu V, Tal J, Arad A (2001) Activity of Porphyridium sp. Polysaccharides against Herpes simplex viruses invitro and invivo. J Biochem Biophys Methods 50:189–200

    Article  Google Scholar 

  • Kartz WA, Myers J (1955) Nutrition and growth of several blue green algae. Am J Bot 41:282–287

    Article  Google Scholar 

  • Kaushik R, Saran S, Jasmine I, Saxena RK (2006) Statistical optimization of medium components and growth conditions by response surface methodology to enhance lipase production by Aspergillus carneus. J Mol Catal B Enzym 40:121–126

    Article  CAS  Google Scholar 

  • Kawai H, Isobe Y, Koribe M, Tokuda J, Tokuno I, Endo K, Kawai F (1992) Production of a novel extracellular polysaccharide by a Bacillus strain isolated from Soil. Biosci Biotechnol Biochem 56(6):853–857

    Article  CAS  Google Scholar 

  • Kılıç NK, Dönmez G (2008) Environmental conditions affecting exopolysaccharide production by Pseudomonas aeruginosa, Micrococcus sp., and Ochrobactrum sp. J hazard Mater 154:1019–1024

    Article  Google Scholar 

  • Kim DH, Yang BK, Jeong SC, Park JB, Cho SP, Das S, Yun JW, Song CH (2001) Production of a hypoglycemic, extracellular polysaccharide from the submerged culture of the mushroom. Phellinus linteus 23(7):513–517

    CAS  Google Scholar 

  • Krulwich TA, Ito M, Guffanti AA (2001) The Na+-dependence of alkaliphily in Bacillus. Biochem Biophys Acta 1505:158–168

    Article  CAS  Google Scholar 

  • Kushner DJ (1978) Microbial life in extreme environments. Academic Press, New York

    Google Scholar 

  • Lengeler JW, Drews G, Schlegel HG (1999) Biology of the prokaryotes. Blackwell Science, Oxford

    Google Scholar 

  • Liqin S, Changhai W, Lei S (2008) Effects of light regime on extracellular polysaccharide production by Porphyridium cruentum cultured in flat plate photobioreactors. Bioinforma Biomed Engg. ICBBE 2008. The 2nd international conference on bioinformatics and biomedical engineering, 16–18 May, pp 1488–1491

  • Lopez E, Ramos I, Angeles SM (2003) Extracellular polysaccharides production by Arthrobacter viscosus. J Food Engg 60(4):463–467

    Article  Google Scholar 

  • Lowry OH, Rosenbrough NJ, Larr AL, Randall RJ (1951) Protein measurement with folin-phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Mackinney G (1941) Absorption of light by chlorophyll solutions. J Biol Chem 140:315–325

    CAS  Google Scholar 

  • Maestri O, Joset F (2000) Regulation by external pH and stationary growth phase of the acetolactate synthase from Synechocystis PCC6803. Mol Microbiol 37:828–838

    Article  CAS  Google Scholar 

  • Miller AG, Turpin DH, Canvin DT (1984) Na+ requirement for growth, photosynthesis, and pH regulation in the alkalotolerant cyanobacterium Synechococcus leopoliensis. J Bacteriol 159:100–106

    CAS  Google Scholar 

  • Moreno J, Vargas MA, Madiedo JM, Munoz J, Rivas J, Guerrero MG (2000) Chemical and rheological properties of extracellular polysaccharide produced by the cyanobacterium Anabaena sp. ATCC 33047. Biotechnol Bioengg 67:283–290

    Article  CAS  Google Scholar 

  • Nicolaus B, Panico A, Lama L, Romano I, Manca MC, De Giulio A, Gambacorta A (1999) Chemical composition and production of exopolysaccharides from representative members of heterocystous and non-heterocystous cyanobacteria. Phytochem 52:639–647

    Article  CAS  Google Scholar 

  • Oliveira R, Meloa L, Oliveiraa A, Salgueiroa R (1994) Polysaccharide production and biofilm formation by Pseudomonas fluorescen: effects of pH and surface material. Colloids Surf B Biointerfaces 2:41–46

    Article  CAS  Google Scholar 

  • Ono L, Wollinger W, Rocco IM, Coimbra TLM, Gorin PAJ, Sierakowski M-R (2003) In vitro and in vivo antiviral properties of sulfated galactomannans against yellow fever virus (BeH111 strain) and dengue 1 virus (Hawaii strain). Antiviral Res 60(3):201–208

    Article  CAS  Google Scholar 

  • Otero A, Vincenzini M (2003) Extracellular polysaccharide synthesis by Nostoc strains as affected by nitrogen source and light intensity. J Biotechnol 102:143–152

    Article  CAS  Google Scholar 

  • Peng Y, Zhang L, Zeng F, Kennedy JF (2005) Structure and antitumor activities of the water soluble polysaccharides from Ganoderma tsugae mycelium. Carbohy Poly 59(3):385–392

  • Pomati F, Rossetti C, Gianluca M, Burns BP, Neilan BA (2004) Interactions between intracellular Na+ levels and saxitoxin production in Cylindrospermopsis raciborskii T3. Soc General Microbiol 150:455–461

    CAS  Google Scholar 

  • Raungsomboon S, Chidthaisong A, Bunnag B, Ithorn D, Harvey NW (2006) Production, composition and Pb2+ adsorption characteristics of capsular polysaccharides extracted from a cyanobacterium Gleocapsa gelatinosa. Water Res 4:3759–3766

    Article  Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure culture of cyanobacteria. J Microbiol 11:1–61

    Google Scholar 

  • Roseiro JC, Esgalhado ME, Amaral-Collaço MT, Emery AN (1992) Medium development for xanthan production. Process Biochem 27:167–175

    Article  CAS  Google Scholar 

  • Sampaio MJAM, Rowell P, Stewart WDP (1979) Purification and some properties of Glutamine synthetase from the nitrogen fixing cyanobacterium Anabaena cylindrica and Nostoc sp. J Gen Microbiol 111:181–191

    CAS  Google Scholar 

  • Shah V, Ray A, Garg N, Madamwar D (2000) Characterization of the extracellular polysaccharide produced by a marine cyanobacterium Cyanothece sp. ATCC 51142 and its exploitation towards metal removal from solutions. Curr Microbiol 40:274–278

    Article  CAS  Google Scholar 

  • Shi Y, Sheng J, Yang F, Hu Q (2007) Purification and identification of polysaccharide derived from Chlorella pyrenoidosa. Food Chem 103:101–105

    Article  CAS  Google Scholar 

  • Singh S, Das S (2006) Screening of certain cyanobacterial isolates from saline/alkaline soil of Madhya Pradesh for polysaccharide production. 47th Annual Conference of Association of Microbiologist of India, 6–8 Dec, pp. 23

  • Singh S, Arad S, Richmond A (2000) Extracellular polysaccharide production in outdoor mass cultures of Porphyridium sp. in flat plate glass reactors. J Appl Phycol 12:269–275

    Article  CAS  Google Scholar 

  • Sonoda M, Katoh H, Vermaas W, Schmetterer G, Ogawa T (1998) Photosynthetic electron transport involved in PxcA-dependent proton extrusion in Synechocystis sp. strain PCC6803: effect of pxcA inactivation on CO2, HCO3 , and NO3 uptake. J Bacteriol 180:3799–3803

    CAS  Google Scholar 

  • Sutherland IW (1994) Structure-function relationships in microbial exopolysaccharides. Biotech Adv 12:393–448

    Article  CAS  Google Scholar 

  • Vonshak A, Abeliovick A, Boussiba S, Arad S, Richmond A (1982) Production of Spirulina biomass: effects of environmental factors and population density. Biomass 2:175–185

    Google Scholar 

  • Waditee R, Hibino T, Tanaka Y, Nakamura T, Incharoensakdi A, Takabe T (2001) Halotolerant cyanobacterium Aphanothece halophytica contains an Na+/H+ antiporter, homologous to eukaryotic ones, with novel ion specificity affected by C-terminal tail. J Biol Chem 276:36931–36938

    Article  CAS  Google Scholar 

  • Wang CY, Fu CC, Liu YC (2007) Effects of using light emmiting diodes on the cultivation of Spirulina platensis. Biochem Eng J. doi:10.1016/j.beg.2007.03.004

  • Weber A, Wetten M (1981) Some remarks on the usefulness of algal carotenoid as chemotaxic markers. In: Cygzan FC (ed) Pigments in plant. Academic Verlag, Berlin, pp 104–116

    Google Scholar 

  • West TP (2003) Effect of temperature on bacterial gellan production. W J Microbiol Biotechnol 19(6):849–852

    Article  Google Scholar 

  • Witvrouw M, De Clercq E (1997) Sulfated polysaccharides extracted from sea algae as potential antiviral drugs. Gen Pharmacol 29:247–511

    Article  Google Scholar 

Download references

Acknowledgments

We are thankful to the Head, Department of Biological Science, R. D. University, Jabalpur (M.P.), India for facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shipra Das.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, S., Das, S. Screening, production, optimization and characterization of cyanobacterial polysaccharide. World J Microbiol Biotechnol 27, 1971–1980 (2011). https://doi.org/10.1007/s11274-011-0657-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-011-0657-y

Keywords

Navigation