World Journal of Microbiology and Biotechnology

, Volume 27, Issue 8, pp 1933–1939 | Cite as

Butanol production by Clostridium beijerinckii BA101 using cassava flour as fermentation substrate: enzymatic versus chemical pretreatments

  • Leonardo Lépiz-Aguilar
  • Carlos E. Rodríguez-Rodríguez
  • María Laura Arias
  • Giselle Lutz
  • William Ulate
Short Communication


Cassava flour (CF), a cost-effective source of starch, was employed as a substrate for successful acetone-butanol-ethanol (ABE) production by batch-fermentation with Clostridium beijerinckii. The effect of temperature, initial concentration of CF and chemical/enzymatic hydrolysis were studied in a 23 factorial design. Results revealed that temperature and initial concentration of substrate exert a significant effect on ABE production, as well as interactions of temperature with the other variables. Solvent production was maximized when working at 40°C, 60 g l−1 CF and enzymatic pretreatment. An average of 31.38 g l−1 ABE was produced after 96 h, with a productivity of 0.33 g l−1 h−1. A posterior randomized block design (3 × 2) showed that enzymatic hydrolysis (with saccharification periods of 6 h at 60°C) enhances both reducing sugar and solvent production if compared to chemical pretreatments. Average ABE production in this case was 27.28 g l−1, with a productivity of 0.28 g l−1 h−1. Results suggest that CF may be a suitable substrate for industrial ABE production.


Cassava Butanol ABE fermentation Hydrolysis Clostridium beijerinckii 



The authors thank Gerardo Chacón for his support in statistical analyses and Manuel Molina for his helpful suggestions. Technical help from Laura Villalobos and Andrés Chaves is gratefully acknowledged. This work was partially supported by RECOPE.


  1. Annous BA, Blaschek HP (1991) Isolation and characterization of Clostridium acetobutylicum mutants with enhanced amylolytic activity. Appl Environ Microbiol 57:2544–2548Google Scholar
  2. Ezeji T, Qureshi N, Blaschek HP (2004) Acetone butanol ethanol (ABE) production from concentrated substrate: reduction in substrate inhibition by fed-batch technique and product inhibition by gas stripping. Appl Microbiol Biotechnol 63:653–658CrossRefGoogle Scholar
  3. Ezeji T, Qureshi N, Blaschek HP (2007) Butanol production from agricultural residues: impact of degradation products on Clostridium beijerinckii growth and butanol fermentation. Biotechnol Bioeng 97:1460–1469CrossRefGoogle Scholar
  4. Formanek J, Mackie R, Blaschek HP (1997) Enhanced butanol production by Clostridium beijerinckii BA101 grown in semidefined P2 medium containing 6 percent maltodextrin or glucose. Appl Environ Microbiol 63:2306–2310Google Scholar
  5. Gu Y, Hu S, Chen J, Shao L, He H, Yang Y, Yang S, Jiang W (2009) Ammonium acetate enhances solvent production by Clostridium acetobutylicum EA2018 using cassava as a fermentation medium. J Ind Microbiol Biotechnol 36:1225–1232CrossRefGoogle Scholar
  6. Häggström L (1985) Acetone-butanol fermentation and its variants. Biotechnol Adv 3:13–28CrossRefGoogle Scholar
  7. Jesse TW, Ezeji TC, Qureshi N, Blaschek HP (2002) Production of butanol from starch-based waste packing peanuts and agricultural waste. J Ind Microbiol Biotechnol 29:117–123CrossRefGoogle Scholar
  8. Madihah MS, Ariff AB, Sahaid KM, Suraini AA, Karim MIA (2001) Direct fermentation of gelatinized sago starch to acetone-butanol-ethanol by Clostridium acetobutylicum. World J Microbiol Biotechnol 17:567–576CrossRefGoogle Scholar
  9. Parekh M, Formanek J, Blaschek HP (1998) Development of a cost-effective glucose-corn steep medium for production of butanol by Clostridium beijerinckii. J Ind Microbiol Biotechnol 21:187–191CrossRefGoogle Scholar
  10. Parekh M, Formanek J, Blaschek HP (1999) Pilot-scale production of butanol by Clostridium beijerinckii BA101 using a low-cost fermentation medium based on corn steep water. Appl Microbiol Biotechnol 51:152–157CrossRefGoogle Scholar
  11. Qureshi N, Blaschek HP (1999) Production of acetone butanol ethanol (ABE) by a hyper-producing mutant strain of Clostridium beijerinckii BA101 and recovery by pervaporation. Biotechnol Prog 15:594–602CrossRefGoogle Scholar
  12. Qureshi N, Blaschek HP (2000) Economics of butanol fermentation using hyper-butanol producing Clostridium beijerinckii BA101. Trans IChemE. Part C 78:139–144Google Scholar
  13. Qureshi N, Blaschek HP (2001a) ABE production from corn: a recent economic evaluation. J Ind Microbiol Biotechnol 27:292–297CrossRefGoogle Scholar
  14. Qureshi N, Blaschek HP (2001b) Recent advances in ABE fermentation: hyper-butanol producing Clostridium beijerinckii BA101. J Ind Microbiol Biotechnol 27:287–291CrossRefGoogle Scholar
  15. Qureshi N, Lolas A, Blaschek HP (2001) Soy molasses as fermentation substrate for production of butanol using Clostridium beijerinckii BA101. J Ind Microbiol Biotechnol 26:290–295CrossRefGoogle Scholar
  16. Qureshi N, Li XL, Hughes S, Saha BC, Cotta MA (2006) Butanol production from corn fiber xylan using Clostridium acetobutylicum. Biotechnol Prog 22:673–680CrossRefGoogle Scholar
  17. Qureshi N, Saha BC, Cotta MA (2007) Butanol production from wheat straw hydrolysate using Clostridium beijerinckii. Bioprocess Biosyst Eng 30:419–427CrossRefGoogle Scholar
  18. Qureshi N, Ezeji TC, Ebener J, Dien BS, Cotta MA, Blaschek HP (2008) Butanol production by Clostridium beijerinckii. Part I: Use of acid and enzyme hydrolyzed corn fiber. Biores Technol 99:5915–5922CrossRefGoogle Scholar
  19. Sadavisam S, Manickam A (1996) Biochemical methods. New Age International, New DelhiGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Leonardo Lépiz-Aguilar
    • 1
  • Carlos E. Rodríguez-Rodríguez
    • 2
    • 5
  • María Laura Arias
    • 2
  • Giselle Lutz
    • 3
  • William Ulate
    • 1
    • 4
  1. 1.School of Chemical EngineeringUniversidad de Costa Rica (UCR)San JoséCosta Rica
  2. 2.Food and Water Microbiology Laboratory, Faculty of MicrobiologyUCRSan JoséCosta Rica
  3. 3.School of ChemistryUCRSan JoséCosta Rica
  4. 4.Costa Rican Petroleum Refinery (RECOPE)San JoséCosta Rica
  5. 5.Unitat de Biocatàlisi Aplicada associada al IQAC (CSIC-UAB) and Departament d’Enginyeria Química, Escola d’EnginyeriaUniversitat Autònoma de BarcelonaBellaterraSpain

Personalised recommendations