Skip to main content

Advertisement

Log in

The BapF protein from Pseudomonas aeruginosa is a β-peptidyl aminopeptidase

  • Short Communication
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A gene encoding a so far uncharacterized β-peptidyl aminopeptidase from the opportunistic human pathogen Pseudomonas aeruginosa PAO1 was cloned and actively expressed in the heterologue host Escherichia coli. The gene was identified in the genome sequence by its homology to the S58 family of peptidases. The sequence revealed an open reading frame of 1,101 bp with a deduced amino acid sequence of 366 amino acids. The gene was amplified by PCR, ligated into pET22b(+) and was successfully expressed in E. coli BL21 (DE3). It was shown that the enzyme consists of two polypeptides (α- and β-subunit), which are processed from the precursor. The enzyme is specific for N-terminal β-alanyl dipeptides (β-Ala-Xaa). BapF hydrolyses efficiently β-alanine at the N-terminal position, including H-β3hAla-pNA, H–D-β3hAla-pNA and β-Ala-l-His (l-carnosine). d- and l-alaninamide were also hydrolysed by the enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Birnboim HC, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523

    Article  CAS  Google Scholar 

  • Bompard-Gilles C, Villeret V, Davies GJ, Fanuel L, Joris B, Frère JM, Van Beeumen J (2000) A new variant of the Ntn hydrolase fold revealed by the crystal structure of l-aminopeptidase d-ala-esterase/amidase from Ochrobactrum anthropi. Structure Fold Des 8:153–162

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Fanuel L, Goffin C, Cheggour A, Devreese B, Van Driessche G, Joris B, Van Beeumen J, Fre`re J-M (1999) The DmpA aminopeptidase from Ochrobactrum anthropi LMG7991 is the prototype of a new terminal nucleophile hydrolase family. Biochem J 341:147–155

    Article  CAS  Google Scholar 

  • Geueke B, Kohler HPE (2007) Bacterial β-peptidyl aminopeptidases: on the hydrolytic degradation of β-peptides. Appl Microbiol Biotechnol 74:1197–1204

    Article  CAS  Google Scholar 

  • Geueke B, Heck T, Limbach M, Nesatyy V, Seebach D, Kohler HPE (2006) Bacterial beta-peptidyl aminopeptidases with unique substrate specificities for beta-oligopeptides and mixed beta, alpha-oligopeptides. FEBS J 273:5261–5272

    Article  CAS  Google Scholar 

  • Gonzales T, Robert-Baudouy J (1996) Bacterial aminopeptidases: properties and functions. FEMS Microbiol Rev 18:319–344

    Article  CAS  Google Scholar 

  • Heck T, Seebach D, Osswald S, Ter Weil MK, Kohler HP, Geueke B (2009) Kinetic resolution of aliphatic beta-amino acid amides by beta-aminopeptidases. Chem Bio Chem 15:1558–1561

    Google Scholar 

  • Holloway BW, Krishnapillai V, Morgan AF (1979) Chromosomal genetics of Pseudomonas. Microbiol Rev 43:73–102

    CAS  Google Scholar 

  • Komeda H, Asano Y (2005) A DmpA-homologous protein from Pseudomonas sp. is a dipeptidase specific for beta-alanyl dipeptides. FEBS J 272:3075–3084

    Article  CAS  Google Scholar 

  • Lyczak JB, Cannon CL, Pier GB (2000) Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes Infect 2:1051–1060

    Article  CAS  Google Scholar 

  • Rawlings ND, Barrett AJ, Bateman A (2010) MEROPS: the peptidase database. Nucleic Acids Res 38:D227–D233

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FS, Hufnagle WO, Kowalik DJ, Lagrou M, Garber RL, Goltry L, Tolentino E, Westbrock-Wadman S, Yuan Y, Brody LL, Coulter SN, Folger KR, Kas A, Larbig K, Lim R, Smith K, Spencer D, Wong GK, Wu Z, Paulsen IT, Reizer J, Saier MH, Hancock RE, Lory S, Olson MV (2000) Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406:959–964

    Article  CAS  Google Scholar 

  • Studier FW, Moffatt BA (1986) Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189:113–130

    Article  CAS  Google Scholar 

  • Teorell T, Stenhagen E (1938) Ein Universalpuffer für den pH-Bereich 2, 0 bis 12, 0. Biochem Z 299:416–419

    CAS  Google Scholar 

  • Woodcock DM, Crowther PJ, Doherty J, Jefferson S, Decruz E, Noyer-Weidner M, Smith SS, Michael MZ, Graham MW (1989) Quantitative evaluation of Escherichia coli host strains for tolerance to cytosine methylation in plasmid and phage recombinants. Nucleic Acids Res 17:3469–3478

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Conflict of interests statement

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Rosenau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuchs, V., Jaeger, KE., Wilhelm, S. et al. The BapF protein from Pseudomonas aeruginosa is a β-peptidyl aminopeptidase. World J Microbiol Biotechnol 27, 713–718 (2011). https://doi.org/10.1007/s11274-010-0484-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-010-0484-6

Keywords

Navigation