World Journal of Microbiology and Biotechnology

, Volume 26, Issue 11, pp 2105–2111 | Cite as

Screening for alkaline keratinolytic activity in fungi isolated from soils of the biosphere reserve “Parque Costero del Sur” (Argentina)

  • Lorena ElíadesEmail author
  • Marta Cabello
  • Claudio Voget
  • Betina Galarza
  • Mario Saparrat
Short Communication


A screening was carried out on 69 fungal strains isolated from alkaline-calcareous, neutral and alkaline-sodic soils, as well as from their associated plant material, to determine their ability to grow at alkaline pH. A total of 32 fungi were selected for their ability to produce alkaline keratinase activity in submerged shaken cultures supplemented with soybean meal (SM) and tryptone and on cow hair (CH) under solid state fermentation conditions. Although several fungal strains produced keratinolytic activity on both SM and CH, they differed in the levels detected. Among them, Aspergillus niger, Cladosporium cladosporioides, Metarrhizium anisopliae, Neurospora tetrasperma and Westerdikella dispersa were the best producers, with levels higher than 1.2 U ml−1. Different fungal species are here reported for the first time for their ability to produce keratinolytic activity at alkaline pH.


Alkaline keratinases Argentina Fungi Soil Biosphere reserve Parque Costero del Sur 



LA Elíades, CE Voget and MCN Saparrat are Members of Carrera del Investigador CONICET. Cabello MN is a Member of Carrera del Investigador CICPBA. This research was supported by grants from UNLP (11/N527 Proyect), CIC, CONICET (PIP 1422), Agencia Nacional de Promoción Científica y Tecnológica (PICT 2007 01233).


  1. Arturi MF, Barrera MD, Brown AD (1996) Caída y masa de hojarasca en bosques de Celtis tala Gill ex Planch y Scutia buxifolia Reiss del este de la provincia de Buenos Aires, Argentina. Rev Fac Agr La Plata 101:151–158Google Scholar
  2. Cabello MN, Arambarri AM (2002) Diversity in soil fungi from undisturbed and disturbed Celtis tala and Scutia buxifolia forests in the eastern Buenos Aires province (Argentina). Microbiol Res 157:115–125CrossRefGoogle Scholar
  3. Crous PW, Allegrucci N, Arambarri AM, Cazau MC, Groenewald JZ, Wingfield MJ (2005) Dematiocladium celtidis gen. sp. nov. (Nectriaceae, Hypocreales), a new genus from Celtis leaf litter in Argentina. Mycol Res 109:833–840CrossRefGoogle Scholar
  4. Domsch KH, Gams W, Anderson T (1993) Compendium of soil fungi IHW-Verlag. Eching, p 859Google Scholar
  5. Elíades LA (2009) Estudio de la micobiota alcalofílica y alcalino- tolerante del suelo de los bosques de Celtis tala Gill (ex Planch) y Scutia buxifolia Reiss en el Partido de Magdalena. Provincia de Buenos Aires. Tesis Doctoral. Facultad de Cs. Naturales y Museo. UNLP, p 196Google Scholar
  6. Elíades LA, Bucsinszky AM, Cabello MN (2004) Micobiota alcalofílica y alcalinotolerante en suelos de bosques xéricos en una localidad de la Provincia de Buenos Aires. Bol Micol (Chile) 19:41–47Google Scholar
  7. Elíades LA, Cabello MN, Voget CE (2006a) Soil microfungi Diversity in Celtis tala and Scutia buxifolia forests in Eastern Buenos Aires Province (Argentina). J Agric Tech 2(2):229–249Google Scholar
  8. Elíades LA, Cabello MN, Voget CE (2006b) Contribution to the study of alkalophilic and álcali-tolerant Ascomycota from Argentina. Darwiniana 44(1):64–73Google Scholar
  9. Elíades LA, Voget CE, Arambarri AM, Cabello MN (2007) Fungal communities on decaying saltgrass (Distichlis spicata) in Buenos Aires province (Argentina). Sydowia 59(2):227–234Google Scholar
  10. Friedrich J, Gradisăr H, Mandin D, Chaumont J (1999) Screening fungi for synthesis of keratinolytic enzymes. Lett Appl Microbiol 28:127–130CrossRefGoogle Scholar
  11. Galarza BC, Goya LM, Cantera CS, Reinoso HE, Lopez LMI (2004) Fungal transformation of bovine hair. Part 1: isolation of fungus with keratinolitic activity. J Soc Leather Technol Chem 88(3):93–98Google Scholar
  12. Galarza BC, Garro ML, Cavello I, Cazau MC, Hours R, Cantera CS (2007) Fungal biotransformation of bovine hair: assessment of structural changes. J Soc Leather Technol Chem 91(6):229–232Google Scholar
  13. Goya JF, Placci LG, Arturi MF, Brown AD (1992) Distribution and structural characteristics of “Los talares” of the Biosphere Reserve Parque Costero del Sur. Rev Fac Agr La Plata 68:53–64Google Scholar
  14. Gradisăr H, Friedrich J, Križaj I, Jerala R (2005) Similarities and specificities of fungal keratinolytic proteases comparison of keratinases of Paecilomyces marquandii and Doratomyces microsporus to some known proteases. Appl Environ Microbiol 71(7):3420–3426CrossRefGoogle Scholar
  15. Hofrichter M, Fritsche W (1996) Depolymerization of low-rank coal by extracellular fungal enzyme systems. I. Screening for low -rank- coal- depolymerising activities. Appl Microbiol Biotechnol 46:220–225CrossRefGoogle Scholar
  16. Mangiaterra M, Giusano G, Deluca G, Alonso J (2000) Geohongos queratinofílicos en áreas de recreación de jardines de infantes en Rosario (Argentina). Bol Micol (Chile) 15:101–106Google Scholar
  17. Mohan KS, Pillai GB (1982) A method for laboratory scale mass cultivation of Metarhizium anisopliae. Folia Microbiol 27:281–283CrossRefGoogle Scholar
  18. Moore-Landecker E (1996) Fundamentals of the fungi. Prentice Hall, New Jersey, p 564Google Scholar
  19. Nagai K, Sakai T, Ratiatmodjo RM, Suzuki K, Gams W, Okada G (1995) Studies on the distribution of alkalophilic and alkali-tolerant soil fungi I. Mycoscience 36:247–256CrossRefGoogle Scholar
  20. Pandey KK, Nagveni HC (2007) Rapid characterization of brown and white rot degraded chir pine and rubberwood by FTIR spectroscopy. Holz Roh Werkst 65:477–481CrossRefGoogle Scholar
  21. Rojas NL, Cavallito SF, Cabello MN, Hours RA, Voget CE (2009) Alkaline polysccharidases produced in solid state cultures by alkalophilic fungi isolated from Argentina. J Pure Appl Micro 2(1):1–10Google Scholar
  22. Sánchez RO, Ferrer JA, Duymovich OA, Hurtado MA (1976) Estudio pedológico integral de los Partidos de Magdalena y Brandsen (Provincia de Buenos Aires). Anales del LEMIT, serie II No 310. Ministerio de Obras Públicas de la Provincia de Buenos Aires, pp 1–123Google Scholar
  23. Saparrat MCN, Guillén F (2005) Ligninolytic ability and potential biotechnology applications of the South American fungus Pleurotus laciniatocrenatus. Folia Microbiol 50:155–160CrossRefGoogle Scholar
  24. Saparrat MCN, Arambarri AM, Balatti PA (2007) Growth response and extracellular enzyme activity of Ulocladium botrytis LPSC 813 cultured on carboxy-methylcellulose under a pH-range. Biol Fertil Soils 44:383–386CrossRefGoogle Scholar
  25. Saparrat MCN, Rocca M, Aulicino MB, Arambarri A, Balatti P (2008) Celtis tala and Scutia buxifolia leaf litter decomposition by selected fungi in relation to their physical and chemical properties and the lignocellulolytic enzyme activity. Eur J Soil Biol 44:400–407CrossRefGoogle Scholar
  26. Smith D, Kolkowski J (1996) Fungi. In: Hunter-Cevera JC, Belt A (eds) Maintaining cultures for biotechnology and industry. Academic Press Inc, CaliforniaGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Lorena Elíades
    • 1
    Email author
  • Marta Cabello
    • 1
  • Claudio Voget
    • 2
  • Betina Galarza
    • 2
    • 3
  • Mario Saparrat
    • 1
    • 4
    • 5
  1. 1.Instituto de Botánica Spegazzini, Fac. de Cs. Naturales y MuseoUniversidad Nacional de La Plata (UNLP)Buenos AiresArgentina
  2. 2.Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI)Fac. de Cs. Exactas, UNLPLa PlataArgentina
  3. 3.Centro de Investigación y desarrollo del Cuero (CITEC)Comisión de Investigaciones Científicas de la Prov. de Bs. As. (CIC) e Instituto Nacional de Tecnología Industrial (INTI)San MartínArgentina
  4. 4.Instituto de Fisiología Vegetal (INFIVE)UNLP-CCT-La Plata-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
  5. 5.Cátedra de Microbiología AgrícolaFac. de Cs. Agrarias y Forestales, UNLPLa PlataArgentina

Personalised recommendations