Skip to main content
Log in

Isolation and characterization of homocholine-degrading Pseudomonas sp. strains A9 and B9b

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Soil isolates, identified as Pseudomonas sp. strain A9 and Pseudomonas sp. strain B9b (based on the phenotypic features and phylogenetic analysis) were found to degrade homocholine aerobically. Morphological characterization using the optical microscope under light and phase contrast conditions showed that cells of strain A9 formed short rods measuring approximately 0.5–1 × 1.5–2.0 μm in size while those of B9b formed long rods of 0.5–1 × 2.5–3.0 μm during the early growth phase on both nutrient broth and basal-homocholine (basal-HC) media. Strain A9 was able to grow on basal-HC medium at a wide range of temperatures (4–41°C) whereas strain B9b was not able to grow at either 4 or 41°C. Comparative 16S rRNA sequencing studies indicated that strain A9 fell into the Pseudomonas putida subclade whereas strain B9b located in Pseudomonas fulva subclade. Washed cells of strains A9 and B9b degraded homocholine completely within 6 h with concomitant formation of several metabolites. Analysis of the metabolites by capillary electrophoresis, fast atom bombardment–mass spectrometry, and gas chromatography–mass spectrometry, showed trimethylamine (TMA) as the major metabolite beside β-alanine betaine and trimethylaminopropionaldehyde. Therefore, the possible degradation pathway of homocholine in the isolated strains is through successive oxidation of the alcohol group (–OH) to aldehyde (–CHO) and acid (–COOH), and thereafter the cleavage of β-alanine betaine C–N bonds yielding trimethylamine and an alkyl chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abee T, Palmen R, Hellingwerf KJ, Konings WN (1990) Osmoregulation in Rhodobacter sphaeroides. J Bacteriol 172:149–154

    CAS  Google Scholar 

  • Alia, Hayashi H, Chen THH, Murata N (1998a) Transformation with a gene for choline oxidase enhances the cold tolerance of Arabidopsis during germination and early growth. Plant Cell Environ 21:232–239

    Article  CAS  Google Scholar 

  • Alia, Hayashi H, Sakamoto A, Murata N (1998b) Enhancement of the tolerance of Arabidopsis to high temperatures by genetic engineering of the synthesis of glycine betaine. Plant J 16:155–161

    Article  CAS  Google Scholar 

  • Annamalai T, Venkitanarayanan K (2009) Role of proP and proU in betaine uptake by Yersinia enterocolitica under cold and osmotic stress conditions. Appl Environ Microbiol 75:1471–1477

    Article  CAS  Google Scholar 

  • Behrendt U, Ulrich A, Schumann P (2003) Fluorescent pseudomonads associated with the phyllosphere of grasses; Pseudomonas trivialis sp. nov., Pseudomonas poae sp. nov. and Pseudomonas congelans sp. nov. Int J Syst Evol Microbiol 53:1461–1469

    Article  CAS  Google Scholar 

  • Boch J, Kempf B, Bremer E (1994) Osmoregulation in Bacillus subtilis: synthesis of the osmoprotectant glycine betaine from exogenously provided choline. J Bacteriol 176:5364–5371

    CAS  Google Scholar 

  • Boksa P, Collier B (1980) Acetylation of homocholine by rat brain: subcellular distribution of acetylhomocholine and studies on the ability of homocholine to serve as substrate for choline acetyltransferase in situ and in vitro. J Neurochem 34(6):1470–1482

    Article  CAS  Google Scholar 

  • Buck JD (1982) Non-staining (KOH) method for determination of gram reaction of marine bacteria. Appl Environ Microbiol 44:992–993

    CAS  Google Scholar 

  • Carroll PT, Aspry JM (1980) Subcellular origin of cholinergic transmitter release from mouse brain. Science 210:641–642

    Article  CAS  Google Scholar 

  • Channon HJ, Platt AP, Smith JAB (1937) The dietary prevention of fatty livers. Two analogues of choline. Biochem J 31:1736–1742

    CAS  Google Scholar 

  • Collier B, Lovat S, Ilson D, Barker LA, Mittag TW (1977) The uptake, metabolisms and release of homocholine: studies with rat brain synaptosomes and cat superior cervical ganglion. J Neurochem 28:331–339

    Article  CAS  Google Scholar 

  • Gu ZJ, Wang L, Rudulier DL, Zhang B, Yang SS (2008) Characterization of the glycine betaine biosynthetic genes in the moderately halophilic bacterium Halobacillus dabanensis D-8. Curr Microbiol 57:306–311

    Article  CAS  Google Scholar 

  • Hampton D, Zatman LJ (1983) The metabolism of tetramethylammonium chloride by bacterium 5H2. Biochem Soc Trans 1:667–668

    Google Scholar 

  • Hanson AD, Rathinasabapathi B, Rivoal J, Burnet M, Dillon MO et al (1994) Osmoprotective compounds in the Plumbaginaceae: a natural experiment in metabolic engineering of stress tolerance. Proc Natl Acad Sci USA 91:306–310

    Article  CAS  Google Scholar 

  • Hassan M, Morimoto S, Murakami H, Ichiyanagi T, Mori N (2007) Purification and characterization of 4-N-trimethylamino-1-butanol dehydrogenase of Pseudomonas sp. 13CM. Biosci Biotechnol Biochem 71:1439–1446

    Article  CAS  Google Scholar 

  • Hauser E, Kampfer P, Busse H-J (2004) Pseudomonas psychrotolerans sp. nov. Int J Syst Evol Microbiol 54:1633–1637

    Article  CAS  Google Scholar 

  • Hayashi H, Alia, Mustardy L, Deshnium P, Ida M et al (1997) Transformation of Arabidopsis thaliana with the codA gene for choline oxidase: accumulation of glycine betaine and enhanced tolerance to salt and cold stress. Plant J 12:133–142

    Article  CAS  Google Scholar 

  • Ikuta S, Imamura S, Misaki H, Horiuchi Y (1977) Purification and characterization of choline oxidase from Arthrobacter globiformis. J Biochem 82:1741–1749

    CAS  Google Scholar 

  • Kaech A, Vallotton N, Egli T (2005) Isolation and characterization of heterotrophic bacteria able to grow aerobically with quaternary ammonium alcohols as sole source of carbon and nitrogen. Syst Appl Microbiol 28:230–241

    Article  CAS  Google Scholar 

  • McCue KF, Hanson AD (1990) Effect of soil salinity on the expression of betaine aldehyde dehydrogenase in leaves: investigation on hydraulic, ionic and biochemical signals. Aust J Plant Physiol 19:555–564

    Article  Google Scholar 

  • Miura-Fraboni J, Englard S (1983) Quantitative aspects of γ-butyrobetaine and d- and l-carnitine utilization by growing cell cultures of Acinetobacter calcoaceticus and Pseudomonas putida. FEMS Microbiol Lett 18:113–116

    CAS  Google Scholar 

  • Mohamed Ahmed IA, Arima J, Ichiyanagi T, Sakuno E, Mori N (2009a) Isolation and characterization of 3-N-trimethylamino-1-propanol degrading Arthrobacter sp. strain E5. Res J Microbiol 4(2):49–58

    Article  CAS  Google Scholar 

  • Mohamed Ahmed IA, Arima J, Ichiyanagi T, Sakuno E, Mori N (2009b) Isolation and characterization of 3-N-trimethylamino-1-propanol degrading Rhodococcus sp. strain A2. FEMS Microbiol Lett 296:219–225

    Article  CAS  Google Scholar 

  • Mori N, Kawakami B, Hyakutome K, Tani Y, Yamada Y (1980) Characterization of betaine aldehyde dehydrogenase from Cylindrocarpon didymum M-1. Agric Biol Chem 44:3015–3016

    CAS  Google Scholar 

  • Mori N, Shirakawa K, Uzura K, Kitamoto Y, Ichikawa Y (1988) Formation of ethylene glycol and trimethylamine from choline by Candida tropicalis. FEMS Microbiol Lett 51:41–44

    Article  CAS  Google Scholar 

  • Mori N, Yoshida N, Kitamoto Y (1992) Purification and properties of betaine aldehyde dehydrogenase from Xanthomonas translucens. J Ferment Bioeng 73:352–356

    Article  CAS  Google Scholar 

  • Mori N, Fuchigami S, Kitamoto Y (2002) Purification and properties of betaine aldehyde dehydrogenase with high affinity for NADP from Arthrobacter globiformis. J Biosci Bioeng 93:130–135

    Article  CAS  Google Scholar 

  • Nagasawa T, Mori N, Tani Y, Ogata K (1976) Characterization of choline dehydrogenase of Pseudomonas aeruginosa A-16. Agric Biol Chem 40:2077–2084

    CAS  Google Scholar 

  • Nguyen PD, van Ginkel CG, Plugge CM (2008) Anaerobic degradation of long-chain alkylamines by a denitrifying Pseudomonas stutzeri. FEMS Microbiol Ecol 66:136–142

    Article  CAS  Google Scholar 

  • Nishihara T, Okamoto T, Nishiyama N (2000) Biodegradation of didecyldimethylammonium chloride by Pseudomonas fluorescens TN4 isolated from activated sludge. Appl Environ Microbiol 88:641–647

    CAS  Google Scholar 

  • Nishimura N, Zhang J, Abo M, Okubo A, Yamazaki S (2001) Application of capillary electrophoresis to the simultaneous determination of betaines in plants. Anal Sci J 17:103–106

    Article  CAS  Google Scholar 

  • Rathinasabapathi B, Sigua C, Ho J, Gage DA (2000) Osmoprotectant β-alanine betaine synthesis in the Plumbaginaceae: S-adenosyl-l-methionine dependent N methylation of β-alanine to its betaine via N-methyl and N,N-dimethyl β-alanines. Physiol Plant 109:225–231

    Article  CAS  Google Scholar 

  • Rathinasabapathi B, Raman SB, Sigua C, Aly MAM (2002) β-Alanine betaine: anitrogenous osmoprotectant implicated in plant tolerance to salinity and hypoxic stress. In: Wood AJ (ed) Biochemical and molecular responses of plant to the environment. Research signpost, Trivandrum, pp 69–77

    Google Scholar 

  • Rhodes D, Rich PJ, Myers AC, Reuter CC, Jamieson GC (1987) Determination of betaines by fast atom bombardment mass spectrometry. Plant Physiol 84:781–788

    Article  CAS  Google Scholar 

  • Roberts MF (2005) Organic compatible solutes of halotolerant and halophilic microorganisms. Saline Syst 1:1–30

    Article  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  Google Scholar 

  • Seim H, Loster H, Claus R, Kleber H-P, Strack E (1982) Formation of γ-butyrobetaine and trimethylamine from quaternary ammonium compounds structure-related to l-carnitine and choline by Proteus vulgaris. FEMS Microbiol Lett 13:201–205

    CAS  Google Scholar 

  • Smith LT, Pocard JA, Bernard T, Le Rudulier D (1988) Osmotic control of the glycine betaine biosynthesis and degradation in Rhizobium meliloti. J Bacteriol 170:3142–3149

    CAS  Google Scholar 

  • Takenaka S, Tonoki T, Taira K, Murakami S, Aoki K (2007) Adaptation of Pseudomonas sp. strain 7–6 to quaternary ammonium compounds and their degradation via dual pathways. Appl Environ Microbiol 73:1797–1802

    Article  CAS  Google Scholar 

  • Tani Y, Mori N, Ogata K (1977) A new fungal enzyme, choline oxidase. Agric Biol Chem 41:1101–1102

    CAS  Google Scholar 

  • Tiedje JM, Mason BB, Warren CB, Malec E (1973) Metabolisms of nitrilotriacetate by cells of Pseudomonas species. Appl Microbiol 25:811–825

    CAS  Google Scholar 

  • Timmis KN (2002) Pseudomonas putida: a cosmopolitan opportunist par excellence. Environ Microbiol 4:779–781

    Article  Google Scholar 

  • Tvrzova L, Schumann P, Sproer C, Sedlacek I, Pacova Z et al (2006) Pseudomonas moraviensis sp. nov. and Pseudomonas vancouverensis sp. nov., soil bacteria isolated on nitroaromatic compounds, and emended description of Pseudomonas asplenii. Int J Syst Evol Microbiol 56:2657–2663

    Article  CAS  Google Scholar 

  • Uchino M, Shida O, Uchimura T, Komagata K (2001) Recharacterization of Pseudomonas fulva Iizuka and Komagata 1963, and proposals of Pseudomonas parafulva sp. nov., and Pseudomonas cremoricolorata sp. nov. J Gen Appl Microbiol 46:247–261

    Article  Google Scholar 

  • van Ginkel CG (1996) Complete degradation of xenobiotic surfactants by consortia of aerobic microorganisms. Biodegradation 7:151–164

    Article  Google Scholar 

  • van Ginkel CG, van Dijk JB, Kroon AGM (1992) Metabolism of hexadecyltrimethylammonium chloride in Pseudomonas strain B1. Appl Environ Microbiol 58:3083–3087

    Google Scholar 

  • Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al (1987) International committee on systematic bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464

    Article  Google Scholar 

  • Yuwono T (2005) Metabolism of betaine as a carbon source by an osmotolerant bacterium isolated from the weed rhizosphere. World J Microbiol Biotechnol 21:69–73

    Article  CAS  Google Scholar 

  • Zeisel SH (2006) Choline: critical role during fetal development and dietary requirements in adults. Annu Rev Nutr 26:229–250

    Article  CAS  Google Scholar 

  • Zhang J, Okubo A, Yamazaki S (1997) Determination of betaine aldehyde in plants by low-pH capillary electrophoresis (in Japanese). Bunseki Kagaku 46:509–511

    CAS  Google Scholar 

  • Zhang J, Okubo A, Yamazaki S (2001) Measurement of free choline in plant leaves by capillary electrophoresis. Biosci Biotechnol Biochem 65:2573–2576

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Professor Hisashi Tsujimoto (Laboratory of Plant Genetics and Breeding Sciences, Faculty of Agriculture, Tottori University) for permission to use the laboratory microscopes of his laboratory. We also thank Professor Takeshi Sanekata (Laboratory of Veterinary Infectious Diseases, Faculty of Agriculture, Tottori University) for his assistance in gram staining and electron microscopy. We thank Professor Kip A. Kates (Faculty of Regional Sciences, Tottori University, Editor, Global issues in Language Education Newsletter, MA instructor, Teachers College, Columbia University) and Dr Esam E. Elgorashi (Department of Paraclinical Sciences, University of Pretoria, South Africa) for their assistance in English editing. Financial assistance from the Ministry of Education, Culture, Sports, Science, and Technology of Japan in the form of a scholarship for the first author is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isam A. Mohamed Ahmed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohamed Ahmed, I.A., Arima, J., Ichiyanagi, T. et al. Isolation and characterization of homocholine-degrading Pseudomonas sp. strains A9 and B9b. World J Microbiol Biotechnol 26, 1455–1464 (2010). https://doi.org/10.1007/s11274-010-0320-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-010-0320-z

Keywords

Navigation